a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
c: BH=CH=3cm
AH=căn 5^2-3^2=4cm
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
c: BH=CH=3cm
AH=căn 5^2-3^2=4cm
Cho ∆abc vuông tại a có ab=6cm, ac=8cm. Tia phân giác của góc abc cắt ac tại d. a)Tính bc b) Kẻ ah vuông góc với bc, tia ah cắt bc tại k. Chứng minh:∆ahb=∆khb c) Chứng minh:dk vuông góc với bc d) Qua c kẻ đường thẳng song song với ak, cắt tia ba tại e. Chứng minh:2(ad+ae)>ec
cho tam giác abc vuông tại a có bc=2ab. tia phân giác góc b cắt ac tại .a, chứng minh bd=cd b, tính góc b và góc c của tam giác abc
Cho tam giác ABC, góc A =135 độ,AH là đường cao . Vẽ BK vuông góc AC,CK cắt HA tại E
a, Chứng minh BA vuông góc với EC.
b, Chứng minh AK=BK.
c, So sánh AE và BC.
Cho tam giác ABC. Hai đường phân giác của các cặp góc ngoài đỉnh B và C, đỉnh C và A, đỉnh A và B lần lượt cắt nhau tại A', B', C'. Chứng minh rằng AA', BB', CC' là các đường cao của tam giác A'B'C'. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C' ?
Bài 18. Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) H là giao điểm ba đường trung trực của tam giác ABC.
b) CH vuông góc với AB.
c) AH vuông góc với BC.
Tam giác ABC vuông tại A, đường cao AH. Tìm trực tâm của các tam giác ABC, AHB, AHC ?
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
cho tam giác abc có ba góc nhọn đường cao AH trên một nửa MP thẳng bờ lại đường thẳng a có chứa điểm b kẻ CX song song AD trên tia ax lấy điểm D sao cho CD = AB kẻ DK vuông góc BC k thuộc D sao cho CD = AB kể DK vuông góc BC ê k thuộc BC
a) AH= DK
b)CA=CD
C)AC song song BD
cho tam giác abc vuông tại a kẻ đường cao ah lấy điểm k thuộc doạn thẳng hc qua k kẻ đường thắngong song với ab cắt ah tại d chứng minh ak vuông góc cd