B1: Cho tam giác ABC có góc C bằng 30 độ. Tia phân giác của góc B và đường phân giác góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE
B2: Cho tam giác ABC có I là giao điểm các tia pg của góc B và góc C. Gọi D là giao điểm của AI và BC. Kẻ IH vuông góc BC (H thuộc BC) CMR: góc BIH = góc CID
B3: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. (H thuộc BC), các tia pg của góc HAC và AHC cắt nhau ở I. Tia phân giác của góc HAB cắt BC ở D. Cm: CI điq ua trung điểm của AD
Bài 1: CMR \(3^{2012}-3^2^{011}+3^{2010}-3^{2009}+3^{2008}\)chia hết cho 10
Bài 2: Cho tam giác ABC có AB>AC các tia phân giác góc B và góc C cắt nhau tại I. kẻ IH vuông góc với BC. Tia AI cắt BC tại D
a) CMR: góc BIH=góc CID
b) biết BC=6 và AB-AC=2 .tìm HB và HC
Cho tam giác ABC, các phân giác AD,BE,CF cắt nhau tại I.
a. Tính góc IAC+IBC+ICA
b. Kẻ IH vuông góc BC (H thuộc BC). Chứng minh góc BIH=CID
các bạn giải giùm mik vs ạ:
1,cho tam giác ABC có I là giao các phân giác của góc B và góc C;gọi D là giao AI và BC kẻ IH vuông góc với BC.chứng minh góc BIH=góc CID
2,Cho tam giác ABC có góc C =30 độ. tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E.tính góc BCE
3,chứng minh rằng trong tam giác cân trung điểm của cạnh đáy cách đều 2 cạnh bên
1)Tam giác ABC vuông cân tại A, đường trung tuyến AM. Gọi D là điểm thuộc đoạn thẳng MC. Gọi H là chân đường vuông góc kẻ từ B đến AD. Gọi I, K lần lượt là chân đường vuông góc kẻ từ M đến AD và BH. Chứng minh HM là tia phân giác của góc BHD.
2)Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.
3) Cho tam giác ABC có góc C=30 độ. Tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE.
Cho tam giác ABC , I là giao điểm các tia phân giác của góc B và C.Gọi D là giao điểm AI và BC .Kẻ IH vuông góc với BC ( H thuộc BC)
C/m góc BIH = góc CID
tam giác ABC có I là giáo điểm của các tia phân giác góc B , C . gọi D là giao điểm của AI, BC ,Kẻ IH vuông với BC .CM góc BIH = góc CID
1. Cho tam giác abc. Các tia phân giác của các góc b và c cắt nhau tại i. Qua i kẻ đường thẳng song song vói ab, cắt ac và bc ở d và e. CMR: de = ad + be
2. Cho tam giác abc vuông tại a. Các tia phân giác của các góc b và c cát nhau tại i. Kẻ ih vuông góc với bc(h thuộc bc). Biết hi = a; hb = 2a; hc = 3a. Tính chu vi tam giác abc.
3. Tm giác abc có i là giao điểm các tia phân giác của các góc b và c. Gọi d là giao điểm của ai và bc. Kẻ ih vuông góc với bc(h thuộc bc). CMR: góc bih = góc cid.
4.Cho tam giác abc có góc b> góc c, đường phân giác ad. Gọi h là chân đường vuông góc kẻ từ a đến bc. CMR: góc had=góc(b-c)/2.
5. Tam giác abc có góc b lớn hơn góc c 90 độ. Các đường phân giác trong và ngoài của góc a cắt bc ở d và e. CMR:tam giác ade vuông cân.
6. Cho tam giác abc, ad là phân giác trong của góc a. CMR: bd/dc = ab/ac.
7. Cho tam giác abc, bc = a, ca = b, ab = c. Các phân giác ad, be, cf cắt nhau tại i. CMR:a) di/da = a/a+b+c
b) di/da + ei/eb + fi/fc = 1
Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.