Cho tam giác ABC có độ dài các cạnh AB=a,BC=b,CA=C thõa mãn a>b>c và O là điểm bất kì nằm trong tam giác đó,các đoạn AO,BO,CO lần luợng cắt các cạnh tam giác ABC tại P,Q,R.Chứng minh rằng OP+OQ+OR<a
cho tam giác ABC, phân giác BE và CF cắt nhau tại O. chứng minh nếu \(\frac{BO}{OE}.\frac{CO}{OF}=\frac{\left(AB+BC+CA\right)^2}{2AB.AC}\)thì tam giác ABC vuông
Cho tam giác ABC , O nằm trong tam giác đó. Các tia AO,BO,CO cắt BC,CA,AB tại M,N,P. Chứng minh rằng:
\(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge3\sqrt{2}\)
\(\sqrt{\frac{AM}{OA}}+\sqrt{\frac{BN}{OB}}+\sqrt{\frac{CP}{OC}}\ge\frac{3\sqrt{6}}{2}\)
\(\sqrt{\frac{OM}{AM}}+\sqrt{\frac{ON}{BN}}+\sqrt{\frac{OP}{CP}}\ge\sqrt{3}\)
Đã chứng minh:
\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\)
\(\frac{OA}{AM}+\frac{OB}{ON}+\frac{OC}{OP}\ge6\)
\(\frac{AM}{OA}+\frac{BN}{OB}+\frac{CP}{OC}\ge\frac{9}{2}\)
\(\frac{OM}{OA}+\frac{ON}{OB}+\frac{OP}{OC}\ge\frac{3}{2}\)
( bài toán cực trị trong hình học).
cho tam giác abc có 3 góc nhọn.các tia ao,bò,có cắt bc,cá,ab tại p,q,r( o nằm trong tam giác abc).chứng minh oa/op+ob/oq+oc/or > hoặc = 6
Cho tam giác ABC, gọi O là một điểm bất kỳ nằm trong tam giác. Các đường thẳng AO, BO, CO lần lượt cắt các cạnh BC. CA, AB tại D, E, F. Tìm giá trị nhỏ nhất của biểu thức P =\(\sqrt{\frac{OA}{OD}}\)+\(\sqrt{\frac{OB}{OE}}\)+\(\sqrt{\frac{OC}{OF}}\)
Cho tam giác ABC có 3 góc nhọn, nội tiếp trong đường tròn tâm O bán kính R. Gọi D,E,F lần lượt là giao điểm của các đường thẳng AO với BC, BO với AC,CO với AB. Chứng minh rằng: \(AD+BE+CF\ge\frac{9R}{2}\)
Cho tam giác ABC nội tiếp đường tròn (O). gọi AH, AD lần lượt là đường cao, đường phân giác trong của tam giác ABC (H,D ϵϵ BC). tia AD cắt (O) tại E, tia EH cắt (O) tại F và tia FD cắt (O) tại K. cmr AK là đường kính của (O).
Bài 1 So sánh đường tròn (o) đường kish AB và dây AC căng cung AC có số đo bằng 60độ
a, So sánh các góc của tam giác ABC
b, Gọi M, N lần lươt là điểm chính giữa của các cung AC và BC. 2 dây AN và BM cắt nhau tại I. C/m tia CI là tia phân giác của góc ACB
Bài 2 Cho tam giác ABC cân tại A (A<90độ). Vẽ đường tròn đường kính AB cắt AC tại D, cắt AC tại E. c/m
a, Tam giác DBE cân
b, CBE = \(\frac{1}{2}\)BAC
Cho tam giác ABC nội tiếp ( O ) có AB < AC . đường phân giác AD cắt ( O ) ở E . Gọi M là giao điểm của AB và CE , tiếp tuyến tại C của ( O ) cắt AD tại N . Tiếp tuyến tại E cắt CN tại F . Chứng minh :
a) \(BC//MN//EF\)
b) \(\frac{1}{CF}=\frac{1}{CN}+\frac{1}{CD}\)