Cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn (O). Gọi E là điểm chính giữa của cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho EM=EC, đường thẳng BM cắt đường tròn (O) tại N ( N khác B). Các đường thẳng EA và EN cắt cạnh BC lần lượt tại D và F.
a) Chứng minh tam giác AEN đồng dạng với tam giác FED
b) Chứng minh M là trực tâm của tam giác AEN
c) Gọi I là trung điểm của AN, tia IM cắt đường tròn (O) tại K. Chứng minh đường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
Cho tam giác ABC nhọn có AB < AC, đường cao AD. Đường tròn tâm ),đường kính BC. Vẽ AM và AN là hai tiếp tuyến của đường tròn.
a. Chứng minh 5 điểm M, N, O, D. A cùng thuộc một đường tròn
b. Gọi MN cắt AD tại H. Chứng minh H là trực tâm tam giác ABC
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt (O) tại M và N.
a, Chứng minh các tứ giác BHDF và BFEC nội tiếp
b, Chứng minh AM=AN
c, Chứng minh AM là tiếp tuyến của đường tròn ngoại tiếp tam giác MHD
Cho tam giác nhọn ABC có AB < AC và nội tiếp đường tròn (O). Các đường cao BB', CC' cắt nhau tại điểm H. Gọi M là trung điểm của BC. Tia MH cắt đường tròn (O) tại diểm P.
Chứng minh hai tam giác BPC' và CPB' đồng dạng.Các dường phân gaic1 của các góc BPC', CPB' lần lượt cắt AB, AC tại các điểm E và F. Gọi O' là tâm đường tròn ngoại tiếp tam giác AEF; K là giao diểm của HM và AO'.a) Chứng minh tứ giác PEKF nội tiếp
b) Chứng minh các tiếp tuyến tại E và F của đường tròn (O') cắt nhau tại một điểm nằm trên đường tròn (O).
cho tam giác ABC có 3 góc nhọn với AB<AC và AA',BB',CC' là các đường cao .vẽ đường tròn (O) đường kính BC .từ A kẻ các tiếp tuyến AM,AN đến đường tròn (O) ( M,N là tiếp điểm ) .gọi H là trực tâm của tam giác ABC , M' là giao điểm thứ 2 của A'N và đường tròn (O) ,K là giao điểm của OH và B'C'.CMR:
a) 3 điểm M,N,H thẳng hàng
b) \(\frac{KB'}{KC'}=\left(\frac{HB'}{HC'}\right)^2\)
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
cho tam giac ABC nội tiếp đường tròn tâm O phân giác BAC cắt đường tròn O ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt ở D và E.CM a) BC song song với DE b)tam giác AMB đồng dạng với tam giác MCE, tam giác AMC đồng dạng với tam giác MDB c) Nếu AC=CE thì MA^2=MD.ME