B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), hai đường cao BE và CF của tam giác cắt nhau tại H. Kẻ đường kính AK của đường tròn (O; R), gọi I là trung điểm của BC.
a) Chứng minh AH = 2.IO.
b) Biết góc BAC = 60o, tính độ dài dây BC theo R.
Mọi người giải giúp mình câu (d) của bài này với ạ
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng ED, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn
Mọi ng giải giúp mình câu d/ bài này với ạ
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng EF, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn
Cho tam giác ABC có trực tâm H và nội tiếp đường tròn (O) đường kính AD
a, Chứng minh BHCD là hình bình hành
b, Kẻ đường kính OI vuông góc BC tại I. Chứng minh Ị, H, D thẳng hàng
c, Chứng minh AH = 2OI
Cho tam giác ABC nhọn nội tiếp (O). Các đường cao AD,BE,CF cắt nhau tại H. Kéo dài các đường cao này cắt (O) tại G,I,K
a) Chứng minh tam giác KAI cân và BC là phân giác góc HBG
b) Chứng minh OC vuông góc IG và OA vuông góc EF
c) Vẽ hình bình hành BHCL. Chứng minh L thuộc (O)
d) Nếu AH=R. Khi đó hãy tính số đo góc BAC
Mọi người giải giúp mình câu (d) của bài này với ạ
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng ED, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn
Bài 1: Cho ∆ABC có 3 góc nhọn nội tiếp (O;R) các đường cao BE,CF cắt nhau tại H .
a/ Chứng minh: AH vuông góc BC .
b/ AH cắt BC tại D. Kẻ đường kính AK của (O). Chứng mimh: AB.AC = 2R. AD
c/ AK cắt BC tại M. Chứng minh: MB. MC = MA. MK
d/ Gọi I là trung điểm BC. Chứng minh: H, I, K thẳng hàng
Cho tam giác ABC nhọn (AC < AB) nội tiếp đường tròn O đường kính AD. Đường cao CF và BG cắt nhau tại H kẻ OI vuông BC
a) Chứng minh tứ giác CFBD nội tiếp đường tròn
b)chứng minh tam giác ACD đồng dạng tam giác CFB
c)chứng minh tứ giác CHBD là hình bình hành và CD.CG=BD.BF
d)chứng minh I, H, D thẳng hàng