Cho tam giác ABC nội tiếp đường tròn tâm O từ 1 điểm M bất kì trên cung nhỏ AC ta kẻ MK, MI, MH lần lượt vuông góc với BC, CA, AB. tại K, I, H.
a) Chứng minh MCKI, MIHA, MKBH nội tiếp
b) Chứng minh K, I, H thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp (O), M là điểm thuộc cung nhỏ AC. Vẽ MH vuông góc với BC tại H, MI vuông góc AC tại I
a, Chứng minh I H M ^ = I C M ^
b, Đường thẳng HI cắt đường thẳng AB tại K. Chứng minh MK vuông góc vói BK
c, Chứng minh tam giác MIH đồng dạng vói tam giác MAB
d, Gọi E là trung điểm của IH và F là trung điểm AB. Chứng minh tứ giác KMEF nội tiếp từ đó suy ra ME vuông góc vói EF
Cho tam giác ABC có B A C ⏜ = 60 0 , A C = b , A B = c b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.
b) Chứng minh I, J, M thẳng hàng và IJ vuông góc với HK.
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O , trên cung nhỏ BC lấy điểm M sao cho MB lớn hơn MC.Kẻ MI vuông góc với AB tại I , MH vuông góc với BC tại H
a,chứng minh tứ giác BIHM nội tiếp
b,gọi K là giao điểm của IH và AC . chứng minh : góc MIK bằng góc MAK và MK vuông góc với AC
c,tìm vị trí của M trên cung nhỏ BC để IK đạt giá trị lớn nhất
Cho tam giác nhọn ABC (AB<AC). Ở miền trong của tam giác ABC lấy điểm M bất kì. Gọi H; I; K lần lượt là hình chiếu của M lên BC; AC; AB sao cho \(\widehat{HIK}=90^0\). Đường thẳng kẻ từ A vuông góc với IK cắt đường thẳng thẳng kẻ từ C vuông góc với IH tại điểm O.
CMR: BO vuông góc với HK ?
Cho tam giác ABC nội tiếp đường tròn (O). M thuộc cung BC nhỏ. Kẻ MI, MH, MK vuông góc với BC, AB, AC.
CM: a, bốn điểm M, I, B, H cùng thuộc một đường tròn
b, H, I, K thẳng hàng
Cho tam giác ABC có B A C ⏜ = 60 0 , A C = b , A B = c b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.
a) Chứng minh các tứ giác AIEJ, CMJE nội tiếp và E A . E M = E C . E I .
Cho tam giác ABC có B A C ⏜ = 60 0 , A C = b , A B = c b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.
c) Tính độ dài cạnh BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b, c.