Cho ( O;R ) có dây BC cố định , gọi d là đường thằng qua O và vuông góc với BC ; tiếp tuyến B tại ( O ) cắt đường thẳng d tại A . Gọi M là điểm bất kì thuộc cung nhỏ BC ; từ M kẻ MD , ME , MF theo thứ tự vuông góc với AB , BC , CA tại D , E , F
a . Chứng minh AC là tiếp tuyến ( O;R ) và MDBE , MECF là các tứ giác nội tiếp
b . Cho BC = R\(\sqrt{3}\). Tính diện tích hình viên phân tạo thành bởi cung nhỏ BC và dây BC
c . Chứng minh ME2 = MD.MF
d . Gọi P là giao điểm của MB và DE , Q là giao điểm của MC và EF . Đường tròn ngoại tiếp tam giác MDP cắt đường tròn ngoại tiếp tam giác MFQ tại điểm thứ hai là N . Chứng minh rằng đường thẳng MN đi qua trung điểm BC
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. M là một điểm di động trên cung nhỏ BC. ( M khác B,C ) . AM cắt BC tại N. Gọi D,E lần lượt là hình chiếu của N trên AB, AC. DN cắt AC tại F.
a. CM tứ giác ADNE nội tiếp.
b. FN.FD = FE.FA
c. DE = AM.sinBAC
d. Khi M là điểm chính giữa cung BC nhỏ, hãy so sánh diện tichs ADME và diện tích ABC
Cho tam giác ABC có 3 góc nhọn nối tiếp trong đường tròn (O;R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn. GỌi E, F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC.
a). Chứng minh các điểm A, B, H, F cùng thuộc một đường tròn; B, M, F, O cùng thuộc một đường tròn.
b) Chứng minh HE // BD
c) Khi OM = R/2, hãy tính diện tích hình quạt tròn được giới hạn bởi OB, OC và cung nhỏ BC
Cho tam giác ABC nội tiếp đường tròn (O). M là một điểm trên cung BC không chứa A. Gọi. D, E, F lần lượt là hình chiếu của M trên BC, AC và AB
a) Chứng minh rằng D, E, F thẳng hàng.
b) Gọi I, J, K lần lượt là các điểm đối xứng của M qua D, E, F. Chứng minh rằng I, J, K cùng thuộc một đường thẳng và đường thẳng đó đi qua trực tâm H của tam giác ABC.
Cho góc xAy = 60 độ, đường tròn (O)
tiếp xúc với tia Ax tại B, tiếp xúc với tia Ay tại C. Trên cung nhỏ BC của đường tròn (O) lấy điểm M, gọi D, E, F lần lượt là hình chiếu của điểm M trên BC, CA, AB.
a. Chứng minh CDME là tứ giác nội tiếp
b. Tính số đo góc EDF
c. Chứng minh rằng MD^2= ME*MF
Cho đường tròn (O;R) đường kính AB. Gọi Ax và By là hai tiếp tuyến của (O); C là một điểm trên đường tròn (O), D là điểm nằm giữa A và O. Đường vuông góc với CD tại C cắt Ax và By lần lượt tại E và F.
a. Chứng minh: Tứ giác AECD nội tiếp.
b. Gọi M là giao điểm của AC và DE, N là giao điểm của BC và DF. Chứng minh: MN song song với AB.
c. Tính tổng diện tích hai hình viên phân giới hạn bởi các cung nhỏ AC và BC với các dây AC và BC của (O) khi AC=R?
Cho đường tròn tâm O, bán kính R và một điểm A sao cho OA=2R. VẼ các tiếp tuyến AB,AC ( B,C) là các tiếp điểm. Đường thẳng OA cắt BC tại H, cắt cung nhỏ BC và cung lớn BC lần lượt tại I,K
a/ CM OA vuông góc với BC, HI=OA=R bình phương
b/ CM tam gaics ABC đều, tứ giác ABKC là hình thoi
c/ CHứng tỏ I là tâm đường tròn nội tiếp tam giác ABC. Tính theo R bán kính của đường tròn này.
d/ Vẽ cát tueyens bất kì AMN của đường tròn tâm O. Gọi E là tủng điểm MN. CHứng tỏ 5 điểm O,E,A,B,C cùng thuộc một đường tròn
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm (O). Trên cạnh BC lấy điểm D sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm (O) tại M. Gọi E là hình chiếu của M trên AC.
a) Chứng minh tứ giác CDEM nội tiếp một đường tròn.
b) Chứng minh: MA.MD=MB.ME.
Bài 4.(6 điểm). Cho tam giác ABC có 3 góc nội tiếp đường tròn (O) .Trên cung nhỏ BC của đường tròn (O)lấy điểm M ( M không trùng với B,C). Gọi D,E,F lần lượt là 3 điểm đối xứng với M qua BC,CA,AB. Chứng Minh :
a, Ba điểm D,E,F thẳng hàng