Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh:
a) B D 2 = A D . C D
b) Tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh:
a) B D 2 = A D . C D
b) Tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
Cho tam giác ABC nhọn nội tiếp đường tròn tâm
O , Vẽ đường thẳng d song song với tiếp tuyến Ax của đường tròn và cắt 2 dây AB, AC lần lượt tại M,N . Chứng minh tứ giác BMNC nội tiếp
Cho tam giác ABC nội tiếp đường tròn(O), các tiếp tuyến B<C hau tại E, AE cvới (O) cắt đường tròn tại D. CMR tứ giác OBEC nội tiếp . Từ E kẻ đường thẳng d song song với tiếp tuyến A của đường tròn, d cắt AB,AC tại P,Q. CMR AC.AQ= AD.AE
cho tam giác ABC nhọn nội tiếp đường tròn tâm O,AB<AC,hai đường cao BN,CM cắt nhau tại H.
a,Chứng minh tứ giác BMNC nội tiếp.
b,kẻ đường thẳng xy là tiếp tuyến của (O) tại A,chứng minh xy song song với MN
c,chứng minh MN=BC.cos A
d,giả sử góc A bằng 60 độ.Chứng minh OH=AC-AB
cho tam giác ABC, AB<AC và nội tiếp đường tròn (O). D là điểm đối xứng với A qua O. Tiếp tuyến với (O) tại D cắt BC tại E. Đường thẳng DE lần lượt cắt các đương thẳng AB, AC tại K,L. ĐƯơng thẳng qua A song song với EO cắt DE tại F. Đường thẳng qua song song với EO cắt DE tại F. ĐƯơng thẳng qua D song song với Eo lần lượt cắt AB,AC tại M,N. CMR
a. Tứ giác BCLK nội tiếp
b. Đương thẳng EF là tiếp tuyến của đương tròn ngoại tiếp tam giác BCF
c. D là trung điểm MN
cần giải gấp câu c
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M và N. Chứng minh DM=DN
cho tam giác ABC nhọn nội tiếp (O), AB<AC. Các tiếp tuyến tại B, C của (O) cắt nhau tại E; AE cắt (O) tại D (khác điểm A). Kẻ đường thẳng d qua E và song song với tiếp tuyến tại A của (O), d cắt các đường thẳng AB, AC lần lượt tại P, Q. Gọi M là trung điểm của BC. Đường thẳng AM cắt (O) tại N (khác điểm A).
a) Chứng minh: \(EB^2=ED.EA\)và \(\frac{BA}{BD}=\frac{CA}{CD}\)
b) Chứng minh các đường tròn ngoại tiếp của 3 tam giác ABC, EBP, ECQ cùng đi qua 1 điểm
c) Chứng minh E là tâm đường tròn ngoại tiếp tứ giác BCQP
d) Chứng minh tứ giác BCND là hình thang cân
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN