bạn ấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi dễ lắm
bạn ấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi dễ lắm
Cho tam giác ABC nội tiếp đường tròn (O), với trực tâm H. AH kéo dài cắt đường tròn ở E. Kẻ đường kính AOF
a) Chứng minh tứ giác BCFE là hình thang cân
b) Chứng minh tứ giác AEFC nội tiếp đường tròn
c) Gọi I là trung điểm của BC. Chứng minh H,I,F thẳng hàng
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm tam giác ABC, AH kéo dài cắt đường tròn ở E. Vẽ đường kính AF.
a) Chứng minh tứ giác BCFE là hình thang cân,
b) Chứng minh góc BAE bằng góc CAF:
c) Tứ giác BHCF là hình gì ?
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R) có H là trực tâm. Tia AH cắt đường tròn (O) tại E. Kẻ đường kính AOF
a, cm góc BAE=CAF
b, Gọi I là trung điểm BC. Cm: H,I,F thẳng hàng
Cho tam giác nhọn ABC nội tiếp đường tròn (O) và có AC > BC. Giả sử H là trực tâm tam giác ABC, đường tròn ngoại tiếp tam giác BHC cắt AB tại điểm thứ hai là E ( E khác B ). Đường thẳng đi qua D, vuông góc với DO cắt BC tại F và cắt đường tròn (O) tại hai điểm I, J. Chứng minh
a)tứ giác IHJE là tứ giác nội tiếp.
b) H, E, F thẳng hàng.
Cho tam giác ABC (gócC#90 độ),các đường cao AD,BE cắt nhau tại H cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại I và K
a) CM: các tứ giác CDHE nội tiếp . Xác định tâm đường tròn ngoại tiếp tứ giác đó
b) CM: tam giác CKI cân
c)CM: AH=AK
d) Kẻ đường kính BOF (O là tâm đường tròn ngoại tiếp tam giác ABC). Gọi P là trung điểm của AC . CM: 3 điểm H,P,F thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và trực tâm H. Kẻ đường kính AD.
a/ Chứng minh tứ giác BHCD là hình bình hành
B/ Gọi I lầ trung điểm BC. Chứng minh: AH = 2OI
C/ Chứng minh: O,B là trọng tâm G của tam giác ABC là ba điểm thẳng hàng.
1, Cho tam giác ABC nội tiếp (O) đường kính AD. Qua D kẻ tiếp tuyến với đường tròn cắt BC kéo dài tại P. Đường thẳng PO cắt AB, AC ở N, M. Chứng minh rằng OM = ON.
2, Cho tam giác ABC trực tâm H. Gọi A',B',C' là trung điểm của BC, CA, AB. Vẽ 3 đường tròn bằng nhau có tâm A, B, C. (A) cắt B'C' tại D và D'; (B) cắt A'C' tại E và E'. (C) cắt A'B' ở K và K'. CMR: 6 điểm D,D',E,E',K,K' thuộc 1 đường tròn.
3, Cho tam giác ABC nội tiếp (O). Phân giác góc A cắt (O) tại M, vẽ đường kính MN. Phân giác góc B, góc C cắt AN tại P, Q. CMR tứ giác PCBQ nội tiếp
1/ Từ một điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm)
a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này
b/ Cho MO = 2R CMR tam giác MAB đều
2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn
3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp
4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn
Giải giúp mk vs mk đang cần gấp
Cho tam giác ABC nhọn có hai đường cao BE, CF nội tiếp đường tròn (O) đường kính AM. Gọi H là trực tâm, K đối xứng với H qua BC. Gọi I là trung điểm của BC.
a) Chứng minh tứ giác AEHF nội tiếp được;
b) Tứ giác BHCM là hình gì?
c) Chứng minh OI = 1/2 AH ;
d) Chứng minh K thuộc đường tròn (O);
e) Chứng minh tứ giác BKMC là hình thang cân