Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
d) H và M đối xứng nhau qua BC
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt nhau tại đường tròn (O) lần lượt tại M, N, P.
Chứng minh rằng:
1: Tứ giác CEHD, nội tiếp.
2: Bốn điểm B, C, E, F cùng nằm trên một đường tròn
3: AE. AC = AH. AD ; AD. BC = BE. AC
4: H và M đối xứng nhau qua BC.
5: Xác định tâm đường tròn nội tiếp tam giác DEF.
Cho tam giác ABC nội tiếp (O;R) đường cao AD, BE, CF cắt nhau tại H. K là điểm đối xứng của H qua BC a) Chứng minh tứ giác ACKB nội tiếp đường tròn b) vẽ đường kính AM, I là trung điểm BC chứng minh H,I,M thẳng hàng
Tam giác nhọn ABC thuộc đường tròn tâm (o), có 3 đường cao AD,BE,CF cắt nhau tại H. AD cắt (o) tại M
c/m H đối xứng với M qua BC
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) có 3 đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt (O) tại K.
a) Chứng minh tam giác BHK cân rồi suy ra BC là trung trực của HK
b) Vẽ đường kính AM của (O). Chứng minh: tam giác ABD đồng dạng tam giác AMC và OA vuông góc EF tại Q
c) Chứng minh AQ.AM=AE.AC và tứ giác QHDM nội tiếp.
cho tam giác ABC nội tiếp đường tròn tâm O,2 đường cao AD và BK cắt nhau tại H.AD cắt đường tròn tại E. a/ chứng minh BC là tia phân giác của góc HBE b/chứng minh e đối xứng vs H qua BC.
Bài 1: Cho tam giác ABC nội tiếp đường tròn (O) có các đường cai AD, BE, CF cắt nhau tại H. Gọi M là trung điểm BC. (Mỗi ý có thể vẽ 1 hình khác nhau nếu cần thiêt)
a) CMR H là tâm đường tròn nội tiếp tam giác DE
b) CMR: AH = 2OM
c) Gọi H’ đối xứng với H qua đường thẳng BC. CMR: H’ thuộc đường tròn (O)
d) CMR: đường tròn ngoại tiếp tam giác (BHC) đối xứng với đường tròn qua đường thẳng BC.
Cho tam giác ABC ( AB<AC) nội tiếp đường tròn (O) , bán kính R , đường cao AD,BE,CF của tam giác ABC cắt nhau tại H.
Chứng minh:
1) tứ giác BFHD,BFEC nội tiếp đường tròn
2) FH là tia phân giác của góc DFE và H là tâm đường tròn nội tiếp tam giác DEF
3) Gọi M là trung điểm BC . Chứng minh OM//AD và tứ giác DMEF nội tiếp
4) Gọi N là giao điểm AD và BF , chứng minh 1/HN - 1/HD = 2/AH
5) Gọi K là giao điểm AD và đường tròn (O) , khác A . Chứng minh HK đối xứng qua BC
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Gọi I là trung điểm của BC, K đối xứng với H qua I. CM: A, O, K thẳng hàng.
b) CM: AK vuông góc EF
c) Cm: nếu tam giác ABC có tanB.tanC=3 thì OH//BC