Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hỏi Làm Gì

Cho tam giác ABC nhọn , O là điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M,N,P. Chứng minh rằng:
\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\)
Giúp với bà con!!!

Hoàng Lê Bảo Ngọc
29 tháng 9 2016 lúc 17:27

A B C M N P O

Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bđt Bunhiacopxki, ta có : 

\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)

\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)

Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)

dao thi mai _123
9 tháng 1 2018 lúc 20:37

Neu đề bài trên kia là cho >_ 6 thì chứng minh thế nào


Các câu hỏi tương tự
Vananh11062001
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
Thức Nguyễn Văn
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
hong pham
Xem chi tiết
Đặng Thiên Long
Xem chi tiết
♥➴Hận đời FA➴♥
Xem chi tiết
Quang Nhật Nguyễn
Xem chi tiết
Hàn Băng
Xem chi tiết