Câu 2: Cho tam giác ABC có 2 góc nhọn nooijt tiếp trong đường tròn tâm O . Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Chứng minh :
1) Tứ giác BCDE nooitj tiếp , từ đó suy ra Góc BCD = góc AED
2) Kẻ đg kính AK . CM AB.BC=AK.BD
3)Từ O kẻ OM vuông góc với BC . Cm M,H,K thẳng hàng
Ai giúp mình với :(
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng.
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng
Cho tam giác ABC nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H. Chứng minh rằng rằng:
A) Tứ giác BCDE nội tiếp đường tròn, từ đó suy ra góc BCD = góc AED
B) Kẻ đường kính AK, chứng minh AB.BC = AK.BD
C) Từ điểm O kẻ OM vuông góc với BC Chứng minh H, K, M thẳng hàng
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm (O) . Đường cao BD và đường cao CE cắt nhau tại H , BD cắt CE tại F, AF cắt đường tròn (O) tại K.
a, Cm : tứ giác BCDE nội tiếp, xác định tâm đường tròn.
b, cm : FA .FK = FE.FD;
c. CM : FH vuông góc với AM
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng.
Xem thêm tại: http://tin.tuyensinh247.com/de-thi-hoc-ki-2-lop-9-mon-toan-2014-tp-bien-hoa-c30a16586.html#ixzz45o6Ih1pR
Giúp tớ với tớ cần gấp ai trả lời đúng tớ tik cho 3 tik
tớ giả được câu a,b rồi còn câu c thôi
Bài 4: cho tam giác ABC có 3 góc nhọn nội tiếp đường trong tâm O. Các đường cao BD và CE của tam giác(D thuộc AC , E thuộc AB) cắt nhau tại H.Chứng minh:
a) Tứ giác BCDE nội tiếp, từ đó suy ra góc BCD = góc AED
b) Kẻ đường kính AK. Chứng minh: AB.BC=AK.BD
c) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh H ; M ; K thẳng hàng
cho tam giác ABC ( AB < AC) có ba góc nhọn nội tiếp đường tròn (O). Các đường cao BD, CE của tam giác ABC cắt nhau tại H.
1. Cm tg AEDH, BCDE nội tiếp
2. Cm OA vuông góc với DE
3. Đường tròn đường kính AH cắt đt (O) tại F ( F khác A). cm các đường thẳng DE, BC, AF đồng duy
Em chỉ cần câu 3 thôi ạ, em cảm ơn