Cho tam giác ABC nội tiếp đưòng tròn (O), hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF
a, Tứ giác BFCH là hình gì?
b, Gọi M là trung điểm của BC. Chứng minh rằng ba điểm H, M, F thẳng hàng
c, Chứng minh OM = 1 2 AH
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O các đường cao AD, BE, CF cắt nhau tại H.
a) cm DHEC nội tiếp, xác định tâm M.
b) Vẽ (M) cắt (O) tại K. Cm HK song song OM
c) Gọi S là trung điểm BH. Chứng minh nếu EK vuông góc BC thì 3 điểm K, D, S thẳng hàng
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng.
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!
Bài 1:
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.
Bài 2:
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H.
a) Chứng minh tứ giác ABDE là tứ giác nội tiếp. Xác định tâm S của đường tròn ngoại tiếp tứ giác ABDE.
b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK
c) Gọi I là trung điểm của HC. Chứng minh ST vuông góc ED.
d) Đường phân giác trong của góc BAC cắt BC tại M và cắt đường tròn ( O ) tại N ( N khác A ). Gọi I là tâm đường tròn nội tiếp tam giác ACM.
Gọi L là giao điểm của đường tròn ( O ) và CL. Chứng minh : N,O,L thẳng hàng.
e) Chứng minh ANKL là hình chữ nhật.
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của MDC
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh AB2 + AC2 + CD2 + BD2 = 8R2