Cho tam giác ABC cân tại A. Gọi G là trọng tâm, O là giao điểm ba đường trung trực của tam giác ABC. a) Tam giác BOC là tam giác gì? b) Chứng minh ba điểm A, O, G thẳng hàng?
Cho tam giác ABC nhọn, H,G,O lần lượt là trực tâm, trọng tâm và giao của 3 đường trung trực của tam giác ABC, M là trung điểm của BC.
a, Chứng minh rằng OM=1/2 AH
b, E,F lần lượt là trung điểm của AG,HG
chứng minh: tam giác EFG = tam giác MOG
c, Chứng minh: H,G,O thẳng hàng
Cho tam giác ABC có trung tuyến AM. Gọi H là trực tâm, O là giao điểm các đường trung trực của tam giác ABC. Giao điểm của AM và HO là G. Chứng minh rằng G là trọng tâm của tam giác ABC
Cho tam giác ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của tam giác ABC. Chứng minh H,G,O thẳng hàng và HG= 2GO
Bài 3: Cho tam giác nhọn ABC. Gọi H,G,O lần lượt là trực tâm , trọng tâm giao điểm ba đường trung trực của tam giác do. tia AG cắt BC ở M. Gọi I là trung điểm cua GA, K là trung điểm của GH. Chứng minh
a) OM=1/2 AH
b) Tam giác IGK= Tam giác MGO
c) Ba điểm H,G,O thẳng hàng
d) GH = 2GO
Cho tam giác ABC. Gọi G là trọng tâm tam giác. H là trực tâm tam giác. I là giao điểm 3 đường phân giác. O là điểm cách đều 3 đỉnh tam giác.
Chứng minh rằng: tam giác ABC là tam giác đều khi và chỉ khi các điểm G,H,I,O trùng nhau và ngược lại.
Bài 4. Tam giác ABC cân tại A có góc A = 120°, các đường trung trực của AB và AC cắt nhau tại O, căt cạnh BC lần lượt tại E và F Chứng minh E là trực tâm, trọng tâm tam giác OAB và F là trực tâm, trọng tâm tam giác OAC Bài 5. Tam giác ABC. Qua các đinh A, B, C kẻ các đường thắng song song với cạnh đôi diện, chúng cắt nhau tạo thành tam giác DEF. Chứng minh răng các đường cao của tam giác ABC là các đường trung trực của tam giác DEF MECA và lấy điểm N sao c
cho tam giác nhọn ABC, trung tuyến AM. Gọi H là trực tâm, O là giao điểm của các đường trung trực của tam giác ABC. CMR :
a, So sánh AH và OM.
b, gọi G là giao điểm của AM và HO. CMR G là trọng tâm của tam giác ABC
Cho tam giác ABC có trực tâm H, trọng tâm G và O là tâm đường tròn ngoại tiếp. Chứng minh H, O, G thẳng hàng