thiếu đề nhưng mk đã làm 1 bài giống thế này nên biết đoạn sau của nó như sau: CMR:AB+BC+CA>3/2(AH+BH+CH)...Nếu ko đúng thì bỏ qua nhé!
Nếu chỉ có BDT đươn thuần thì :
Qua H kẻ đt // AC cắt AB tại X và đt // AB cắt AC tại Y => XHY là hbh và HX vg BH, HY vg CH
AB + AC = BX + (XA + AY) + YC = BX + (AX + XH) + YC > HB + HA + HC
Tương tự có BA + BC > HA + HB + HC, CA + CB > HA + HB + HC
Cộng vế theo vế 3 bđt ta có 2(AB + AC + BC) > 3(HA + HB + HC)
```````````````````````````````````````...
Ta se Cm một BDT mạnh hơn và toàn diện hơn
Giả sử a >=b >= c. Do 2S = a ha = b hb = c hc =>ha <= hb <= hc
Goij A1; B1 ; C1 lan luot la hinh chieu cua A; B : C len cac canh cua Tam giac ABC
Ta co ha = AH.S/( Sb + Sc) ≤ hb = BH.S/(Sa + Sc) => AH( Sa + Sc) ≤ BH( Sb + Sc) (1 )
Ta se CM Sa ≥ Sb
DO Sa/Sb = BC1/AC1 = BC cosB /( AC cosA) = sinA cosB/(sinB cosA) = tanA/tanB ≥ 1 do a ≥ b suy ra Sa≥ Sb => Sa + Sc ≥ Sb + Sc ( 2)
Tu (1) va (2 ) suy ra AH ≤ BH, tuong tu ta suy ra BH ≤ CH do do AH ≤ BH ≤ CH \
Do 6S = a ha + b hb + c hc = aAH + b BH + c CH + 2(Sa+Sb+Sc) =
= aAH + b BH + c CH +2S => aAH + b BH + c CH = 4S
Áp dụng BDT che-bu-sep ta co (a+b+c)(AH + BH + CH) <= 3( a AH + b BH + c CH)
= 12S = 6absinC = 24R^2 sinA sinB sinC
Ta dự đoán 12R^2 sinA sinB sinC <= 1/(2√3) (a+b+c)^2 = 2/(√3)R^2 * ( sinA + sinB + sinC)^2
<=> sinA sinB sinC < = 1/(6√3) ( sinA + sinB + sinC)^2
Ta có (sinA + sinB + sinC )^2 <= 3( sin^2A + sin^2B + sin^2C) =
= 3/2 ( 2 - cos^2C + cosC cos( A-B) ) <= 3/2 ( 2 -cos^2C + cosC)
<= 27/4 =>sinA + sinB + sinC ≤ 3√3/2
=> 3√3/2 ≥ 3³√(sinA sinB sinC) => ³√(sinA sinB sinC) ≤ √3/2
suy ra (sinA + sinB + sinC)²/(sinA sinB sinC) ≥ 9/³√(sinA sinB sinC) ≥ 6√3
Từ đó suy ra (a+b+c)(AH + BH + CH) ≤ √3/3 ( a + b + c )² =>
=> 3/2( AH + BH + CH) ≤ √3/2 (a+b+c) < a + b + c
THIẾU ĐỀ NHƯNG MÌNH LÀM BÀI TƯƠNG TỰ GIỐNG BÀI CỦA BẠN NHA !
Nếu chỉ có BDT đươn thuần thì :
Qua H kẻ đt // AC cắt AB tại X và đt // AB cắt AC tại Y => XHY là hbh và HX vg BH, HY vg CH
AB + AC = BX + (XA + AY) + YC = BX + (AX + XH) + YC > HB + HA + HC
Tương tự có BA + BC > HA + HB + HC, CA + CB > HA + HB + HC
Cộng vế theo vế 3 bđt ta có 2(AB + AC + BC) > 3(HA + HB + HC)
```````````````````````````````````````...
Ta se Cm một BDT mạnh hơn và toàn diện hơn
Giả sử a >=b >= c. Do 2S = a ha = b hb = c hc =>ha <= hb <= hc
Goij A1; B1 ; C1 lan luot la hinh chieu cua A; B : C len cac canh cua Tam giac ABC
Ta co ha = AH.S/( Sb + Sc) ≤ hb = BH.S/(Sa + Sc) => AH( Sa + Sc) ≤ BH( Sb + Sc) (1 )
Ta se CM Sa ≥ Sb
DO Sa/Sb = BC1/AC1 = BC cosB /( AC cosA) = sinA cosB/(sinB cosA) = tanA/tanB ≥ 1 do a ≥ b suy ra Sa≥ Sb => Sa + Sc ≥ Sb + Sc ( 2)
Tu (1) va (2 ) suy ra AH ≤ BH, tuong tu ta suy ra BH ≤ CH do do AH ≤ BH ≤ CH \
Do 6S = a ha + b hb + c hc = aAH + b BH + c CH + 2(Sa+Sb+Sc) =
= aAH + b BH + c CH +2S => aAH + b BH + c CH = 4S
Áp dụng BDT che-bu-sep ta co (a+b+c)(AH + BH + CH) <= 3( a AH + b BH + c CH)
= 12S = 6absinC = 24R^2 sinA sinB sinC
Ta dự đoán 12R^2 sinA sinB sinC <= 1/(2√3) (a+b+c)^2 = 2/(√3)R^2 * ( sinA + sinB + sinC)^2
<=> sinA sinB sinC < = 1/(6√3) ( sinA + sinB + sinC)^2
Ta có (sinA + sinB + sinC )^2 <= 3( sin^2A + sin^2B + sin^2C) =
= 3/2 ( 2 - cos^2C + cosC cos( A-B) ) <= 3/2 ( 2 -cos^2C + cosC)
<= 27/4 =>sinA + sinB + sinC ≤ 3√3/2
=> 3√3/2 ≥ 3³√(sinA sinB sinC) => ³√(sinA sinB sinC) ≤ √3/2
suy ra (sinA + sinB + sinC)²/(sinA sinB sinC) ≥ 9/³√(sinA sinB sinC) ≥ 6√3
Từ đó suy ra (a+b+c)(AH + BH + CH) ≤ √3/3 ( a + b + c )² =>
=> 3/2( AH + BH + CH) ≤ √3/2 (a+b+c) < a + b + c
```````````````````````````````````````...
Rõ ràng BDT cuối mà ta cm dc mạnh hơn BDT cần CM
Nếu chỉ có BDT đươn thuần thì :
Qua H kẻ đt // AC cắt AB tại X và đt // AB cắt AC tại Y => XHY là hbh và HX vg BH, HY vg CH
AB + AC = BX + (XA + AY) + YC = BX + (AX + XH) + YC > HB + HA + HC
Tương tự có BA + BC > HA + HB + HC, CA + CB > HA + HB + HC
Cộng vế theo vế 3 bđt ta có 2(AB + AC + BC) > 3(HA + HB + HC)
```````````````````````````````````````...
Ta se Cm một BDT mạnh hơn và toàn diện hơn
Giả sử a >=b >= c. Do 2S = a ha = b hb = c hc =>ha <= hb <= hc
Goij A1; B1 ; C1 lan luot la hinh chieu cua A; B : C len cac canh cua Tam giac ABC
Ta co ha = AH.S/( Sb + Sc) ≤ hb = BH.S/(Sa + Sc) => AH( Sa + Sc) ≤ BH( Sb + Sc) (1 )
Ta se CM Sa ≥ Sb
DO Sa/Sb = BC1/AC1 = BC cosB /( AC cosA) = sinA cosB/(sinB cosA) = tanA/tanB ≥ 1 do a ≥ b suy ra Sa≥ Sb => Sa + Sc ≥ Sb + Sc ( 2)
Tu (1) va (2 ) suy ra AH ≤ BH, tuong tu ta suy ra BH ≤ CH do do AH ≤ BH ≤ CH \
Do 6S = a ha + b hb + c hc = aAH + b BH + c CH + 2(Sa+Sb+Sc) =
= aAH + b BH + c CH +2S => aAH + b BH + c CH = 4S
Áp dụng BDT che-bu-sep ta co (a+b+c)(AH + BH + CH) <= 3( a AH + b BH + c CH)
= 12S = 6absinC = 24R^2 sinA sinB sinC
Ta dự đoán 12R^2 sinA sinB sinC <= 1/(2√3) (a+b+c)^2 = 2/(√3)R^2 * ( sinA + sinB + sinC)^2
<=> sinA sinB sinC < = 1/(6√3) ( sinA + sinB + sinC)^2
Ta có (sinA + sinB + sinC )^2 <= 3( sin^2A + sin^2B + sin^2C) =
= 3/2 ( 2 - cos^2C + cosC cos( A-B) ) <= 3/2 ( 2 -cos^2C + cosC)
<= 27/4 =>sinA + sinB + sinC ≤ 3√3/2
=> 3√3/2 ≥ 3³√(sinA sinB sinC) => ³√(sinA sinB sinC) ≤ √3/2
suy ra (sinA + sinB + sinC)²/(sinA sinB sinC) ≥ 9/³√(sinA sinB sinC) ≥ 6√3
Từ đó suy ra (a+b+c)(AH + BH + CH) ≤ √3/3 ( a + b + c )² =>
=> 3/2( AH + BH + CH) ≤ √3/2 (a+b+c) < a + b + c
=) 3 người viết giống nhau thế
trên olm dạo này ghét nhất những bạn đi cop bài ng khác r paste vào nhé :))
Qua H kẻ HF // AB (F thuộc AC), HE // AC (E thuộc AB)
H là trực tâm ▲ ABC => BH ┴ AC mà HE // AC => BH ┴ HE (từ ┴ đến //)
=> ▲ BHE vuông tại H => BE > BH (t/c ▲ vuông) (1)
Chứng minh tương tự, ta được CF > CH (2)
HE // AF, HF // AE => AEHF là hình bình hành (theo dấu hiệu nhận biết) => AE = HF (2 cạnh đối) (3)
Xét ▲ AHF có AF + HF > AH (bất đẳng thức tam giác) (4)
Từ (3) và (4) => AE + AF > AH (5)
Từ (1), (2) và (5) => BE + CF + AE + AF > AH + BH + CH => AB + AC > AH + BH + CH (6)
Chứng minh tương tự, ta được:
* AB + BC > AH + BH + CH (7)
* AC + BC > AH + BH + CH (8)
Từ (6), (7) và (8) => 2(AB + AC + BC) > 3(AH + BH + CH) => HA + HB + HC < 2/3(AB + AC + BC)