Cho tam giác ABC cân tại A, có 3 góc nhọn, đường cao AD, BE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với AB, cắt tia AD tại K.
a) CMR BHCK là hình thoi
b) Kẻ DP, DQ vuông góc với BE, BA. CMR BQPD là hình thang cân
c) Gọi N đối xứng Q qua BD. CMR BPDN là hcn
d) CMR AP vuông góc với KN
Cho tam giác ABC có A=90 độ. Gọi M là trung điểm của BC ,qua M, kẻ MN vuông góc BC ( N thuộc AC). Vẽ tia Nx song song với BC ; My song song với AC. Tia Nx giao với tia My tại H
a) tứ giác MCNH là hình gì ?
b) CMR: BH vuông góc với HN
c) CMR tứ giác ANMH là hình thang cân
d) CMR: A và B đối xứng với nhau qua HM
e) tam giác ABC cần thêm điều kiện gì để tứ giác AHBN là hình thang cân
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
chiều mình học rồi ạ.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
Cho tam giác ABC vuông tại A. Trên đoạn thẳng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường vuông góc với AB cắt BI tại K.
a) CMR tứ giác EKFC là hình bình hành
b) Qua I kẻ đường vuông góc với AF cắt BD tại M. CMR AI=BM
c) CMR C đối xứng với D qua MF
d)Tìm vị trí của E trên AB để A,I,D thẳng hàng
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC vuông cân tại A. Trên đoạn thẳng AB lấy điểm E, trên
tia đối của tia CA lấy điểm F sao cho BE = CF . Vẽ hình bình hành BEFD. Gọi I là giao điểm
của EF và BC. Qua E kẻ đường thẳng vuông góc với AB cắt BI tại K.
a) Chứng minh rằng : Tứ giác EKFC là hình bình hành
b) Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. CMR : AI = BM
c) CMR : C đối xứng với D qua MF
d) Tìm vị trí của E trên AB để A, I, D thẳng hàng.