Cho tam giác ABC nhọn. Các đường cao AK,BD,CE cắt nhau tại H.
1.Chứng minh: \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
2. Giả sử: \(HK=\dfrac{1}{3}AK\) . Chứng minh rằng: tanB . tan C =3
3.Giả sử \(S_{ABC}=120cm^2\) và BAC = \(60^o\) . Hãy tính diện tích tam giác ADE?
Cho tam giác ABC nhọn; các đường cao AK; BD; CE cắt nhau tại H.
a ) Chứng minh : \(\frac{KC}{KB}=\frac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
b ) Gỉa sư \(HK=\frac{1}{3}AK\). Chứng minh rằng \(\tan B.\tan C=3\)
c ) giả sử \(S_{ABC}=120cm^2;\widehat{BAC}=60^0\) . . Hãy tính diện tích tam giác ADE?
Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H.
1. Chứng minh: \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
2.Giả sử: \(HK=\dfrac{1}{3}AK.\) Chứng minh rằng: tan B . tan C = 3
Cho tam giác nhọn ABC các đường cao AK, BD,CE cắt nhau tại H. a) chứng minh KC/KB=AC^2+CB^2-AB^2/CB^2+AB^2-AC^2. b) HK=1/3AK. Chứng minh tangB*tangC=3. c) giả sử diện tích tam giác ABC=120cm và góc BAC bằng 60 độ. Tính diện tích tam giác ADE
cho tam giác ABC nhọn; các đường cao AK;BD;CE cắt nhau tại H.
a)chứng minh: \(\frac{KC}{KB}=\frac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
b) giả sử: HK=\(\frac{1}{3}AK\). chứng minh rằng : \(\tan B.\tan C=3\)
c) giả sử \(\delta_{ABC}=120cm^2\)và góc \(BAC=60^o\).Tính diện tích tam giác ADE?
Cho tam giác ABC nhọn; các đường cao AK; BD; CE cắt nhau tại H
a, Chứng minh \(\frac{KC}{KB}=\frac{AC^2+BC^2-AB^2}{CB^2+AB^2-AC^2}\)
cho đường tròn (O;R), vẽ 2 đường kính AB, CD vuông góc với nhau. E bất kì trên cung nhỏ AD. Nối C với E cắt OA tại M, nối E với B cắt OD tại N
a)Tính CM*CE+BD^2 theo r
b) Giả sử HK=1/3AK. chứng minh rằng tanB.tanC=3
c) giá sử Sabc=120cm^2 và BAC=60 độ . hãy tính diện tích tam giac ACE
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. AH kéo dài cắt đường tròn (O;R) tại D:
a, Chứng minh rằng\(\widehat{BAH}=\widehat{CAO}\)
b, Giả sử AH=R. Chứng minh rằng: \(\widehat{BAC}=60^o\)
c, Tính tổng: \(^{AB^2+BD^2+DC^2+CA^2}\)theo R
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: SFAE=SABC.cos2A
b) Chứng minh nếu H là trung điểm của AD thì tanB.tanC=2
c) Ak là phân giá góc BAC và Góc A= 2@. Chứng minh: AK=\(\frac{2AB\cdot AC\cdot cosA}{AB+AC}\)