Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô gái thất thường (Ánh...

Cho tam giác ABC nhọn, các đường cao AA', BB', CC'', H là trực tâm.

a) Tính tổng \(\frac{HA'}{AA'}+\frac{Hb'}{BB'}+\frac{HC'}{CC'}\)

b) gọi AI là phân giác của tam giác ABC, IM, IN thứ tự là phân giác của góc AIC và ATB. Cmr: AN.BI.CM=BN.IC.AM

c) cmr: \(\frac{\left(AB+BC+CA\right)^2}{AA'^2=BB'^2+CC'^2}\ge4\)

Thanh Tùng DZ
19 tháng 4 2019 lúc 20:34

A B C A' B' C' H I M N

a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)

Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)

\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)

mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)

\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)

Thanh Tùng DZ
19 tháng 4 2019 lúc 20:49

A B C A' H I I x D

vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA  giao điểm Cx tại I

\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật

\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)

Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC

\(\Rightarrow\)BD2 \(\le\)( BC + CD )2 

\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2

\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2 

\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2

\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2   . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC

tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2    Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC

4AA'2 \(\le\)( AB + AC )2 - BC2   Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC

Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)

\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)

Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều