b)Do AI là phân giác
=>\(\frac{IB}{IC}=\frac{AB}{AC}\)
Do IN là phân giác=>\(\frac{AN}{BN}=\frac{AI}{BI}\)
Do IM là phân giác
=>\(\frac{CM}{AM}=\frac{CI}{AI}\)
=>\(\frac{BI}{CI}\cdot\frac{AN}{BN}\cdot\frac{CM}{AM}=\frac{AB}{AC}\cdot\frac{AI}{BI}\cdot\frac{CI}{AI}=\frac{AB}{AC}\cdot\frac{CI}{BI}=1\)
=>AN.BI.CM=BN.IC.AM
A=(\frac{m-1}{1}+...+\frac{m-(m-1)}{m-1}+\frac{m-m}{m})+(\frac{1}{m-1}+\frac{2}{m-2}+...+\frac{m-2}{2}+\frac{m-1}{1})
a/ Ta có:
\(\frac{S_{HBC}}{S_{ABC}}=\frac{\frac{1}{2}.HA'.BC}{\frac{1}{2}.AA'.BC}=\frac{HA'}{AA'}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\left(2\right)\\\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=1\)