Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau tại H. a) CM: tam giác ABE đồng dạng tam giác ACF. b) CM: góc AEF = góc ABC. c) AH cắt BC tại D, đường thẳng qua B song song với AC cắt hai tia EF, ED theo thứ tự tại M, N. CM: BM=BN
Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
Cho tam giác có ba góc nhọn, hai đường cao BE, CF cắt nhau tại H (E?AC, F?AB ). Chúng minh: a) tam giác AEB ?đồng dạng với ?. tam giác AFC b)CM tam giác AEF ? đồng dạng với ?.TAM GIÁC ABC c) Tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng. giải giùm tớ câu c thôi
Cho tam giác ABC có ba góc nhọn, Hai đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác ABE đồng dạng tam giác ACF
Tia AH cắt BC tại D và cắt EF tại M. Chứng minh AD.MH = AM.HD
Cho tam giac abc có ba góc nhọn, hai đường cao BE, CF cắt nhau tại H (EAC, FAB ).
Chứng minh: a) tam giác AEB đồng dạng với . tam giác AFC
b)CM tam giác AEF đồng dạng với TAM GIÁC ABC
c) Tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng.
giải giùm tớ câu c thôi
GIẢI GIÚP MIK VS Ạ
cho tam giác abc nhọn (ab<ac) vẽ đường cao be và cf cắt nhau tại h.
a chứng minh tam giác abe đồng dạng với tam giác acf
b chứng minh he.hb=hf.hc
c. ah cắt bc tại d . Chứng minh: BH.BE+CH.CF=BC2
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. Đường thẳng qua B vuông góc AB và đường thẳng qua C vuông góc AC cắt nhau tại Q. Đường trung trực của AC và BC cắt nhau tại O; BC giao HQ tại M; HO giao AM tại G
a. CMR: tam giác AHE đồng dạng BHD
b. CMR: BHCQ là h.b.h
c. CMR: A;O;Q thẳng hàng
d. CMR: G là trọng tam tam giác ABC. Từ đó suy ra HG=2GO
cho tam giác ABC có ba góc nhọn,các đường cao AD,BE,CF cắt nhau tại H
A , cm tam giác BDA đồng dạng tam giác BFC
B, cm tam giác AEF đồng dạng ABC
C, cm AH.AD+CH.CF=AC^2
D, Gọi M,N,P,Q lần lượt là chân các đường vuông óc hạ từ D xuống AB,BE,CF,AC cm bốn điểm M,N,P,Q cùng nằm trên một đường thẳng
MỌI NGƯỜI GIÚP MK VỚI TẠI MK CẦN CÁI NÀY GẤP Ạ
Cho tam giác ABC (các góc đều nhọn) các đường cao AD, BE và CF cắt nhau tại H. Gọi M là trung điểm của BC. Đường thẳng qua H vuông góc với MH cắt AB tại P, cắt AC tại Q Cmr a) tam giác AHP đồng dạng với tam giác CMH, tam giác QHA đồng dạng với tam giác HMB b) HP/AH =MH/CM c) HP=HQ