Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và trực tâm H. Kẻ đường kính AD.
a/ Chứng minh tứ giác BHCD là hình bình hành
B/ Gọi I lầ trung điểm BC. Chứng minh: AH = 2OI
C/ Chứng minh: O,B là trọng tâm G của tam giác ABC là ba điểm thẳng hàng.
cho tam giác ABC nội tiếp đường tròn tâm O đường cao AK, H là trực tâm của tam giác, I là trung điểm cạnh AC, phân giác của góc A cắt đường tròn tại M.Chứng minh a) đường thẳng OM đi qua điểm M của BC b)góc KAM= góc MAO c) tam giác AHB đồng dạng tam giác NOI và AH=2ON
Cho tam giác ABC có 3 góc nhọn, các điểm M,N theo thứ tự trung điếm của BC và AC.Các đường trung trực BC và AC cắt nhau tại O qua A kẻ đường thẳng song song vs OM qua B kẻ đường thẳng song song vs ON, chúng cắt nhau tại H
a) cm \(\widehat{ABH}=\widehat{MNO}\)
b) gọi G là trọng tâm của tam giác ABC, cm tam giác AHG đồng dạng tam giác MOG
c) cm 3 điểm H,O,G thẳng hàng
Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM, E là trung điểm AH.
a) Chứng minh H là trực tâm của tam giác ABC.
b) Chứng minh ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO
Cho tam giác ABC nội tiếp đường tròn (O); gọi D là trung điểm của cạnh BC, H là trực tâm của tam giác ABC. Hai đường thẳng AD và OH cắt nhau tại G. Chứng minh rằng: G là trọng tâm của tam giác ABC.
Cho tam giác ABC có 3 góc nhọn và H là trực tâm. Vẽ hình bình hành BHCD. Đường thẳng đi qua D song song với BC cắt AH tại E
1, chứng minh A,B,C,D,E cùng thuộc 1 đường tròn
2, chứng minh tam giác BAE= tam giác DAC
3, Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC, đường thẳng AM cắt OH tại G. Chứng minh G là trọng tâm của tam giác ABC
4, giả sử OD=a. Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a
HELP ME
Cho tam giác ABC nhọn,đường cao AD, trung tuyến AM.Gọi H,G lân lượt là trọng tâm, trực tâm. Chứng minh: a) tam giác BHD đồng dạng Tam giác ACD
b)HG//BC <=> tanB. tanC =3
Cho tam giác ABC nội tiếp (O;R), H là trực tâm của tam giác ABC, I là trung điểm của BC, AD là đường kính, CH giao AD tại E
a) chứng minh AB.AE=AH.AC
b) AI giao OH tại G, chứng minh G là trọng tâm của tam giác ABC