Lấy F là điểm đối xứng với B qua AM, gọi O là giao điểm của BF với AM
\(\Delta\)AOB vuông tại O có ^MAB = 300 (gt) nên ^ABO = 600
Lại có: AF = AB (theo tính chất đối xứng) nên \(\Delta\)AFB đều => ^AFB = 600
\(\Delta\)AFB đều có AO là đường cao nên cũng là trung tuyến => FO = OB
Có M là trung điểm của BC, O là trung điểm của FB nên OM là đường trung bình của \(\Delta\)BFC
=> OM // CF mà OM\(\perp\)FB nên BF\(\perp\)FC => \(\Delta\)BFC vuông tại F hay ^BFC = 900
Ta có: ^CFA = ^BFC + ^BFA = 900 + 600 = 1500
\(\Delta\)AFB đều có AO là đường cao nên cũng là phân giác => ^OAF = 300 => ^FAC = 150
Suy ra ^FCA = 150 hay \(\Delta\)CFA cân tại F => CF = AF
Mà AF = FB nên BF = FC do đó \(\Delta\)BFC vuông cân tại F => ^FBC = 450
=> ^ABC = ^CBF + ^FBA = 450 + 600 = 1050
Vậy ^BCA = 1800 - 1050 - (150 + 300) = 300
BCA\(=60\)nhớ cho mình