Bài 4.Cho tam giác ABC , M là Trung điểm của cạnh BC. Từ 1 điểm E trên cạnh BC ta kẻ Ex//AM. Ex cắt tia CA ở F và tia BA ở G.Chứng minh rằng :FE + EG = 2 AM
Cho tam giác ABC , M là Trung điểm của cạnh BC. Từ 1 điểm E trên cạnh BC ta kẻ Ex//AM. Ex cắt tia CA ở F và tia BA ở G.Chứng minh rằng :FE + EG = 2 AM.
Ai giúp mình với:((
1) Cho tam giác ABC vuông cân tại A, M là trung điểm AC, đường thẳng qua A vuông góc với BM, cắt BC tại D, tính DC/DB
2) Cho tam giác ABC, Mlà trung điểm của BC. Từ 1 điểm E trên BC, kẻ Ex//AM, Ex cắt CA ở F và BA ở G. Cm: EF+EG=2AM
Cho tam giác ABC có đường trung tuyến AM. Đường phân giác của góc AMB cắt
cạnh AB ở E, đường phân giác của góc AMC cắt AC ở F.
a) Chứng minh:
EA/EB = FA/FB
, từ đó chứng minh rằng EF // BC
b) Gọi I là giao điểm của EF và AM. Chứng minh I là trung điểm của EF
c) Biết AM = 7 cm, BC = 12 cm. Tính tỉ số diện tích hai tam giác AMF và MFC
d) Kẻ tia FM cắt tia AB tại K. Chứng minh rằng: KB.EA=KA.EB
Giúp mình với
Cho tam giác ABC cần tại A. Trên cạnh AB và trên tia đổi tia CA lấy các
điểm E và F sao cho BE=CF. Qua E kẻ EG//BC (G thuộc AC)
a. Chứng minh BEGC là một hình thang cần
b Goi O là trung điểm của EF. Chứng minh B 0 C thắng hàng
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC , D là 1 điểm trên cạnh BC , Qua C kẻ đưởng thẳng song song với AC cắt AB ở E . Qua D kẻ đường thẳng song song với AB cắt AC ở F có EF // BC . Chứng minh D là trung điểm cạnh BC
Cho tam giác ABC. Từ D trên cạnh AB kẻ đường thẳng song song với BC cắt AC ở E.
a, Chứng minh: AB/AD = CB/CD=2/3
b, Trên tia đối tia CA, lấy điểm F sao cho CF=BD. Gọi M là giao điểm DF và BC. Chứng minh: DM/MF=AC/AB
Cho tam giác ABC cân tại A, M là trung điểm của cạnh BC. Kẻ tia Mx song song
với AC cắt AB tại E, kẻ tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC.
b) AM là đường trung trực của EF.