Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Trình Hai Ẩn

Cho tam giác ABC . Lấy các điểm D,E theo thứ tự trên các cạnh AB,AC sao cho BD=CE . Gọi M,N theo thứ tự là trung điểm của BC và DE . CMR : đường thẳng MN tạo với các đường thẳng AB , AC các góc bằng nhau

Hoàng Lê Bảo Ngọc
7 tháng 11 2016 lúc 18:45

A B C D E M N I J H K

Gọi H và K là lần lượt là trung điểm của BE và CD thì ta có : 

\(\hept{\begin{cases}NE=ND\\HE=HD\end{cases}}\) => HN là đường trung bình của tam giác BED => \(\hept{\begin{cases}HN\text{//}BD\\HN=\frac{1}{2}BD=\frac{1}{2}EC\end{cases}}\)

Tương tự ta cũng chứng minh được NK , KM , HM là các đường trung bình của tam giác DEC, BDC , BEC

Từ đó suy ra HN = NK = KM = MH

Tứ giác HMKN có 4 cạnh bằng nhau nên là hình thoi => góc HNM = góc KNM 

Mà HN // AB , NK // AC \(\Rightarrow\hept{\begin{cases}\widehat{HNM}=\widehat{BJM}\\\widehat{KNM}=\widehat{CIM}\end{cases}}\) .Từ đó suy ra điều phải chứng minh.

Nguyễn Xuân Sáng
7 tháng 11 2016 lúc 12:02

a) Do P là trung điểm của DE (gt), Q là trung điểm của BE (gt) nên PQ là đường trung bình của tam giác BED, suy ra PQ=12BD.

Chứng minh tương tự MN = 12BD, NP = 12CE và MQ = 12CE.

Mặt khác BD = CE (gt)

Do đó MN = NP = PQ = QM

Vậy tứ giác MNPQ là hình thoi.

b) Do PN // AC, PQ // AB nên QPN^=BAC^ (hai góc có cạnh tướng ứng song song).

Gọi giao điểm của MP với AB là R, ta có ...

Nguyễn Xuân Sáng
7 tháng 11 2016 lúc 12:03

Chịu rồi.


Các câu hỏi tương tự
Đặng Phương Bảo Châu
Xem chi tiết
đinh thị hoàng thơ
Xem chi tiết
Ha Chuthi
Xem chi tiết
Lê Thiên Quân
Xem chi tiết
Xem chi tiết
Zeref Dragneel
Xem chi tiết
Vũ Thu Huyền
Xem chi tiết
Nguyễn Đức Hải
Xem chi tiết
Hoàng Thiện Nhân
Xem chi tiết