Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Thi Lih

Cho tam giác ABC. Lấy các điểm D,E theo thứ tự thuộc tia đối của các tia BA, CA sao cho BD=CE=BC. Gọi O là giao điểm của BE và CD. Qua O vẽ đường thẳng song song với tia phân giác của góc A, đường thẳng này cắt AC ở K. Chứng minh rằng AB=CK

Lê Anh Tú
4 tháng 12 2016 lúc 9:23

Chứng minh :
Vẽ hình bình hành ABMC ta có AB = CM . 
Để chứng minh AB = KC ta cần chứng minh KC = CM. 
Thật vậy xét tam giác BCE có BC = CE (gt) => tam giác CBE cân tại C =>  vì góc C1 là góc ngoài của tam giác BCE =>  mà AC // BM (ta vẽ) =>  nên BO là tia phân giác của . Hoàn toàn tương tự ta có CD là tia phân giác của góc BCM . Trong tam giác BCM, OB, CO, MO đồng quy tại O => MO là phân tia phân giác của góc CMB
Mà :  là hai góc đối của hình bình hành BMCA => MO // với tia phân giác của góc A theo gt tia phân giác của góc A còn song song với OK => K,O,M thẳng hàng.
Ta lại có :   mà  (hai góc đồng vị) => cân tại C => CK = CM. Kết hợp AB = CM => AB = CK (đpcm)

tk nha bạn

thank you bạn

Nguyễn Huy Vũ Dũng
20 tháng 9 2017 lúc 21:00

Bạn tự vẽ hình nha, vẽ hình rồi post lên lâu quá :D

Vẽ hình bình hành ABMCABMC ta có AB=CMAB=CM

Cần chứng minh KC=CMKC=CM

Xét tam giác BCEBCE có BC=CEBC=CE⇒ΔCBE⇒ΔCBE cân tại CC

⇒ˆCBE=ˆE⇒CBE^=E^

Lại có ˆACB=ˆCBE+ˆE⇒ˆCBE=12ˆACBACB^=CBE^+E^⇒CBE^=12ACB^

Mà AC//BM⇒ˆACB=ˆCBM⇒ˆCBE=12ˆCBMAC//BM⇒ACB^=CBM^⇒CBE^=12CBM^

Nên BOBO là phân giác của ˆCBMCBM^

TƯơng tự ta có CDCD là phân giác của ˆBCMBCM^

Trong ΔBCMΔBCM có OB,CO,MOOB,CO,MO đồng quy tại OO

⇒MO⇒MO là tia phân giác của ˆCMBCMB^

Mà ˆBAC,ˆBMCBAC^,BMC^ là hai góc đối của hình bình hành BMCABMCA

⇒MO⇒MO song song với tia phân giác của góc ˆAA^

Mà tia phân giác góc ˆAA^ song song với OKOK 

Nên O,M,KO,M,K thẳng hàng 

Ta lại có ˆCMK=12ˆBMC;ˆA=ˆMCMK^=12BMC^;A^=M^

⇒ˆCMK=ˆA2⇒CMK^=A2^ màˆA2=ˆCKMA2^=CKM^

⇒ˆCKM=ˆCMK⇒ΔCKM⇒CKM^=CMK^⇒ΔCKM cân tại CC

⇒CK=CM⇒CK=CM , suy ra ĐPCM

giúp mình
10 tháng 2 2019 lúc 11:59

Chứng minh :
Vẽ hình bình hành ABMC ta có AB = CM . 
Để chứng minh AB = KC ta cần chứng minh KC = CM. 
Thật vậy xét tam giác BCE có BC = CE (gt) => tam giác CBE cân tại C =>  vì góc C1 là góc ngoài của tam giác BCE =>  mà AC // BM (ta vẽ) =>  nên BO là tia phân giác của . Hoàn toàn tương tự ta có CD là tia phân giác của góc BCM . Trong tam giác BCM, OB, CO, MO đồng quy tại O => MO là phân tia phân giác của góc CMB
Mà :  là hai góc đối của hình bình hành BMCA => MO // với tia phân giác của góc A theo gt tia phân giác của góc A còn song song với OK => K,O,M thẳng hàng.
Ta lại có :   mà  (hai góc đồng vị) => cân tại C => CK = CM. Kết hợp AB = CM => AB = CK (đpcm)

Long Phan
31 tháng 10 2019 lúc 20:27

A B C O M E D K

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đồ Ngốc
Xem chi tiết
Nguyễn Thắng Phúc
Xem chi tiết
nguyễn thị phương
Xem chi tiết
Kagamine LenRinVocaloid0...
Xem chi tiết
Khủng Long Đu Đủ
Xem chi tiết
Dương Thúy Hiền
Xem chi tiết
Best zanis
Xem chi tiết
Bích Trần Thị
Xem chi tiết
Trương Vân Anh
Xem chi tiết