Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Trang

Cho tam giác ABC không có góc tù ( AB < AC ) nội tiếp (O;R). B, C cố định, A di động trên cung lớn BC. Các tiếp tuyến tại B và C của (O) cắt nhau tại M. Từ M kẻ đường thẳng song song với AB cắt (O) tại D và E ( D thuộc cung nhỏ BC ), cắt BC tại F, cắt AC tại I.

a) Đường thẳng OI cắt (O) tại P và Q ( P thuộc cung nhỏ AB)

Đường thẳng QF cắt (O) tại T ( T \(\ne\) Q)

Cm: P, T, M thẳng hàng.

b) Tìm vị trí điểm A trên cung BC sao cho SIBC MAX.

Nguyễn Việt Lâm
23 tháng 5 2019 lúc 15:52

Làm câu b/

\(S_{IBC}=\frac{1}{2}d\left(I;BC\right).BC\) do BC cố định \(\Rightarrow S_{max}\) khi \(d\left(I;BC\right)\) max

Dễ dàng chứng minh MBOIC nội tiếp đường tròn đường kính OM (\(\widehat{BAC}=\widehat{MBC}\) cùng chắn BC, \(\widehat{BAC}=\widehat{MIC}\) đồng vị)

\(\Rightarrow I\) thuộc cung BC của đường tròn đường kính OM

Mà O là điểm chính giữa cung BC

\(\Rightarrow d\left(I;BC\right)\le d\left(O;BC\right)\Rightarrow d\left(I;BC\right)_{max}=d\left(O;BC\right)\)

\(\Rightarrow S_{IBC}=\frac{1}{2}d\left(I;BC\right).BC\) max khi I trùng O hay A là giao điểm thứ 2 của OC và đường tròn hay AC là đường kính