Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đức Hiếu

cho tam giác ABC. Gọi Q là điểm trên cạnh BC (Q khác B,C). Trên AQ lấy điểm P (P khác A,Q). Hai dduowngf thawngr qua P song song AC,AB lần lượt cắt AB,AC tại M,N. 

a) Chứng minh rằng: \(\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=1\)

b) Xác định vị trí điểm Q để \(\frac{AM.AN.PQ}{AB.AC.AQ}=\frac{1}{27}\)

Tran Le Khanh Linh
30 tháng 4 2020 lúc 15:12

a) Gọi H là giao của PN và BC, I là giao của MP và BC

Ta có \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)

Mặt khác áp dụng định lý Talet ta có:

\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+CH}{BC}=\frac{CI}{BC}+\frac{CH}{BC}\left(2\right)\)

Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)

Vì \(\Delta\)ABC đồng dạng với \(\Delta\)PHI (gg)

=> \(\frac{IH}{BC}=\frac{PH}{AB}\)mà \(\frac{PH}{AB}=\frac{PQ}{AQ}\left(4\right)\)

Từ (1)(2)(3)(4) => \(\frac{AN}{AC}+\frac{NC}{AC}=....=\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=1\left(đpcm\right)\)

b) Từ câu (a) ta có:

\(\frac{AM\cdot AN\cdot PQ}{AB\cdot AC\cdot AQ}=\frac{CI\cdot AN\cdot IH}{BC\cdot AC\cdot BC}=\frac{CI\cdot BH\cdot IH}{BC\cdot BC\cdot BC}=\frac{1}{27}\)

=> \(CI\cdot BH\cdot IH=\frac{BC^3}{27}\)

Mặt khác áp dụng BĐT Cosi cho 3 số không âm ta có:

\(CI\cdot BH\cdot IH\le\frac{\left(CI+IH+HB\right)^3}{3^3}=\frac{1}{27}\)

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
30 tháng 4 2020 lúc 16:54

A B C H Q I P M N

Gọi H = PN ∩ BC; I = MP ∩ BC

a, Ta có: \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)

Mặt khác, áp dụng định lý Ta-lét, ta có:

\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+HI}{BC}=\frac{CI}{BC}+\frac{HI}{BC}\left(2\right)\)

Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)

Vì ΔABC đồng dạng với ΔPHI (g.g)

=> \(\frac{HI}{BC}=\frac{PH}{AB}\) mà \(\frac{PH}{AB}=\frac{PQ}{AB}\)

nên \(\frac{HI}{BC}=\frac{PQ}{AB}\left(4\right)\)

Từ (1), (2), (3), (4) suy ra: 

\(\frac{AN}{AC}+\frac{NC}{AC}=\frac{AN}{AC}+\frac{CI}{BC}+\frac{HI}{BC}\)

\(=\frac{AN}{AC}+\frac{AM}{AB}+\frac{PQ}{AQ}=1\left(đpcm\right)\)

b, Từ câu a ta có:  

\(\frac{AM.AN.PQ}{AB.AC.AQ}=\frac{CI.AN.IH}{BC.AC.BC}=\frac{CI.BH.IH}{BC.BC.BC}=\frac{1}{27}\)

\(\Leftrightarrow CI.BH.IH=\frac{1}{27}.BC^3\)

Áp dụng BĐT Cô-si cho 3 số không âm, ta có:

\(CI.BH.IH\le\frac{\left(CI+BH+IH\right)^3}{3^3}=\frac{1}{27}.BC^3\)

Dấu "=" xảy ra <=> CI = BH = IH

<=> Q là trung điểm của BC và AP\(=\frac{2}{3}AQ\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Trần Minh Trí
Xem chi tiết
Viet Thang
Xem chi tiết
Thi Dinh thi
Xem chi tiết
nguyen hieu
Xem chi tiết
Thức Nguyễn Văn
Xem chi tiết
Trần Mai Ngọc
Xem chi tiết
long duc
Xem chi tiết
buileanhtrung
Xem chi tiết
trần gia bảo
Xem chi tiết