Cho tam giác ABC nội tiếp đường tròn (O). M là một điểm trên cung BC không chứa A. Gọi. D, E, F lần lượt là hình chiếu của M trên BC, AC và AB
a) Chứng minh rằng D, E, F thẳng hàng.
b) Gọi I, J, K lần lượt là các điểm đối xứng của M qua D, E, F. Chứng minh rằng I, J, K cùng thuộc một đường thẳng và đường thẳng đó đi qua trực tâm H của tam giác ABC.
Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
2. Giả sử M là điểm di chuyển trên đoạn CE .
a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A,O,H thẳng hàng, từ đó suy ra tứ giác ABHI nội tiếp.
b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O), P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ max.
Cho tam giác ABC cố định nội tiếp đường tròn (O). Trên đường tròn lấy 2 điểm bất kì là M và N. Gọi H;I;K lần lượt là hình chiếu của M trên AB; BC; CA. Gọi D;E;F lần lượt là hình chiếu của N lên AB; BC; CA.
a) CMR: H;I;K thẳng hàng và D;E;F thẳng hàng ?
b) CMR: Đường thẳng chứa 3 điểm H;I;K và đường thẳng chứa 3 điểm D;E;F hợp với nhau 1 góc không đổi khi M;N chạy trên (O) ?
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Cho tam giác ABC nội tiếp đường tròn tâm O . Gọi D,E lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C . Đường thẳng DE cắt BC tại I,cắt cung nhỏ BC ở M .Chứng minh : a.Ba điểm A,D,E thẳng hàng .b.Tứ giác BDCE nội tiếp được trong đường tròn .c.BI.IC=ID.IE
cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Goik M và N lần lượt là điểm chính giữa cung nhỏ AB và cung nhỏ
BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại điểm H và K.
a) chứng minh C,N,K,I cùng thuộc một đường tròn.
b) chứng minh NB2 =NK.NM
c) chứng minh BHIK là hình thoi
d) gọi P, Q lầm lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm đoạn PQ. Vẽ đường kính ND của đường tròn (O). chứng minh D,E,K thẳng hàng.
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF