Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duyên Trần Thị Mỹ

Cho tam giác ABC, gọi O là một điểm bất kỳ nằm trong tam giác. Các đường thẳng AO, BO, CO lần lượt cắt các cạnh BC. CA, AB tại D, E, F. Tìm giá trị nhỏ nhất của biểu thức P =\(\sqrt{\frac{OA}{OD}}\)+\(\sqrt{\frac{OB}{OE}}\)+\(\sqrt{\frac{OC}{OF}}\)

Hoàng Lê Bảo Ngọc
16 tháng 9 2016 lúc 12:22

B C D E F A O

Đặt \(S_{BOC}=x^2,S_{AOC}=y^2,S_{AOB}=z^2\) \(\Rightarrow S_{ABC}=S_{BOC}+S_{AOC}+S_{AOB}=x^2+y^2+z^2\)

Ta có : \(\frac{AD}{OD}=\frac{S_{ABC}}{S_{BOC}}=\frac{AO+OD}{OD}=1+\frac{AO}{OD}=\frac{x^2+y^2+z^2}{x^2}=1+\frac{y^2+z^2}{x^2}\)

\(\Rightarrow\frac{AO}{OD}=\frac{y^2+z^2}{x^2}\Rightarrow\sqrt{\frac{AO}{OD}}=\sqrt{\frac{y^2+z^2}{x^2}}=\frac{\sqrt{y^2+z^2}}{x}\)

Tương tự ta có \(\sqrt{\frac{OB}{OE}}=\sqrt{\frac{x^2+z^2}{y^2}}=\frac{\sqrt{x^2+z^2}}{y};\sqrt{\frac{OC}{OF}}=\sqrt{\frac{x^2+y^2}{z^2}}=\frac{\sqrt{x^2+y^2}}{z}\)

\(\Rightarrow P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{x^2+z^2}}{y}\ge\frac{x+y}{\sqrt{2}z}+\frac{y+z}{\sqrt{2}x}+\frac{x+z}{\sqrt{2}y}\)

           \(=\frac{1}{\sqrt{2}}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{1}{\sqrt{2}}\left(2+2+2\right)=3\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z\Rightarrow S_{BOC}=S_{AOC}=S_{AOB}=\frac{1}{3}S_{ABC}\)

\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}=\frac{OF}{OC}=\frac{1}{3}\Rightarrow\)O là trọng tâm của tam giác ABC

Vậy \(MinP=3\sqrt{2}\) khi O là trọng tâm của tam giác ABC


Các câu hỏi tương tự
Duyên Trần Thị Mỹ
Xem chi tiết
LUU HA
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
Itachi Uchiha
Xem chi tiết
LUU HA
Xem chi tiết
Hàn Băng
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
Hàn Băng
Xem chi tiết
Hàn Băng
Xem chi tiết