-Đường thẳng cố định :)
-Qua M,N kẻ các đường thẳng song song với BC cắt AH tại G,F.
-AI cắt BC tại H.
-Xét △MIG có: MG//NF.
\(\Rightarrow\dfrac{MI}{IN}=\dfrac{IG}{IF}\) (định lí Ta-let)
Mà \(MI=IN\) (I là trung điểm MN)
\(\Rightarrow\dfrac{IG}{IF}=\dfrac{MI}{MI}=1\Rightarrow IG=IF\).
-Xét △ABH có: MG//BH.
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AG}{AH}\) (định lí Ta-let) (1)
-Xét △ACH có: NF//CH.
\(\Rightarrow\dfrac{AN}{AC}=\dfrac{AF}{AH}\) (định lí Ta-let) (2)
-Từ (1), (2) suy ra: \(\dfrac{AG}{AH}+\dfrac{AF}{AH}=\dfrac{AM}{AB}+\dfrac{AN}{AC}=1\)
\(\Rightarrow AG+AF=AH\) mà \(AG+GH=AH\)
\(\Rightarrow AF=GH\) mà \(IG=IF\left(cmt\right)\)
\(\Rightarrow AF+IF=GH+IG\)
\(\Rightarrow AI=IH\) nên I là trung điểm AH.
-Hạ các đường thẳng vuông góc với BC qua A,I lần lượt tại J,K.
-Xét △AJK có: IK//AJ (do cùng vuông góc với BC).
\(\Rightarrow\dfrac{IK}{AJ}=\dfrac{IH}{AH}\) (định lí Ta-let)
Mà \(IH=\dfrac{1}{2}AH\) (H là trung điểm AI).
\(\Rightarrow\dfrac{IK}{AJ}=\dfrac{\dfrac{1}{2}AH}{AH}=\dfrac{1}{2}\)
-Vậy trung điểm I của MN chạy trên đường thẳng song song với BC và cách BC một khoảng cách là \(\dfrac{1}{2}AH\) (tức là I di chuyển trên đường trung bình của △ABC ứng với cạnh BC).