Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Cho hình vuông ABCD cạnh a . Tính \(\left|\overrightarrow{AD}+\overrightarrow{3AB}\right|\) theo a
2. Cho tam giác ABC đều cạnh a. M là trung điểm BC . Tính \(\left|\overrightarrow{MA}+3\overrightarrow{MB}+\overrightarrow{MC}\right|\)theo a
3. Cho tam giác ABC đều cạnh a có G là trọng tâm . Tính \(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|\)theo a
Giups mik vs ạ . Tks
Trg mp hệ tọa độ Oxy cho 3 điểm A(0;1);B(1;3);C(-2;2). Gọi x là hoành độ điểm M nằm trên trục hoành sao cho \(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) bé nhất
Help me!
Bài 14 : Cho ΔABC . CMR: \(\frac{tanA}{tanB}=\frac{c^2+a^2-b^2}{c^2+b^2-a^2}\)
Bài 15 : Cho ΔABC có \(\frac{c}{b}=\frac{m_b}{m_c}\ne1.CMR:2a^2=b^2+c^2\)
Bài 16: Cho ΔABC có b + c =2a . CMR : \(\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)
Bài 17: Cho ΔABC . CMR : S = Pr(sinA+sinB+sinC)
Bài 18: Cho ΔABC có \(a^4=b^4+c^4.CMR:a^2< b^2+c^2.\)Suy ra ΔABC nhọn
Bài 19:Cho ΔABC . CMR: cotA+cotB+cotC = \(\frac{\left(a^2+b^2+c^2\right)R}{abc}\)
Bài 20 : Cho ΔABC có a=2bc.cosC . ΔABC có đặc điểm gì
b. Chứng minh
\(1.bc.cosA+ca.cosB+ab.cosC=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
\(2,\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)
Cho I là trung điểm đoạn thẳng AB, M là điểm tùy ý, H là hình chiếu của M trên AB. Chứng minh rằng:
a, \(\overrightarrow{MI}.\overrightarrow{AB}=\dfrac{1}{2}\left(MB^2-MA^2\right)\)
cho hình tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng (d): x-y+7=0. Gọi M(a;b) là điểm thuộc (d) mà từ đó có thể kẻ được hai tiếp tuyến MA và MB tới (C) sao cho độ dài AB đạt giá trị nhỏ nhất. Khi đó a+b bằng
Cho tam giác ABC đều nội tiếp đường tròn tâm O bán kính R. Cminh với mọi điểm M: \(AM^2+2MB^2-3MC^2=2\overrightarrow{MO}\left(\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right)\)
Cho tam gác ABC. Tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\) là?
Cho ΔABC có A\(\left(\frac{-1}{4};1\right)\), B\(\left(0;3\right)\), C\(\left(3;1\right)\).
a) G là trọng tâm của ΔABC. Tính độ dài đoạn thẳng AG.
b) Tìm tọa độ điểm D có hoành độ dương sao cho ΔABD vuông cân tại B.
Cho ΔABC có A\(\left(2;5\right)\), B\(\left(6;2\right)\), C\(\left(-1;1\right)\).
a) Tìm tọa độ trực tâm H của ΔABC.
b) Tìm tọa độ điểm K là chân đường cao hạ từ đỉnh A của ΔABC.