Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt tại M và N.
Chứng minh rằng :
a) DM=EN
b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN;
c) Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Cho tam giác vuông cân ABC (AB=AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH=KC
: Cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM = CK
b, Chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MN, Q là giao điểm của AC và MK.
d, Chứng minh: PQ song song với BC.
Mấy bạn cho mình hỏi bài này nha, gặm cả tuần chưa ra câu c, còn a,b mình lằm rồi. Cứ viết cả đề cho dễ vẽ hình nha. Cố làm nhanh nhanh chút vì mai mình đi học rồi. Cảm ơn các bạn trước nha.
Cho tam giác vuông cân ABC (AB=AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng BE=CD; AD=AE
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH=KC
Cho tam giác ABC (CA<CB), trên BC lấy các điểm M và N sao cho BM = MN = NC. Qua M kẻ đường thẳng song song với AB cắt AN tại I.
a, Chứng minh : I là trung điểm của AN
b, Qua K là trung điểm của AB kẻ đường thẳng vuông góc với đường phân giác của góc ACB cắt đường thẳng AC tại E, đường thẳng BC tại F. Chứng minh AE = BF.
Cho tam giác ABC cân tại A.Trên cạnh BC lấy điểm D khác C,sao cho CD<\(\frac{1}{2}\)CB,trên tia đối của tia BC lấy điểm E sao cho BE=CD.Các đường thẳng vuông góc với BC kẻ từ D và E cắt các đường thẳng sao AC và AB lần lượt ở K và F. Chứng minh rằng:
a. DK=EF
b. Đường thẳng BC cắt FK tại điểm I là trung điểm của đoạn thẳng FK.
c. Đường thẳng vuông góc với FK tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Cho tam giác nhọn ABC, AB > AC. Phân giác BD và CE cắt nhau tại I.
a) Tính các góc của tam giác DIE nếu góc A=60 độ
b) Gọi giao điểm của BD và CE với đường cao AH của tam giác ABC lần lượt là M và N. Chứng minh BM>MN+NC
cho tam giác ABCcó AB>AC từ trung điểm M của BC vẽ 1 đường thẳng vuông góc vs tia phân giác của góc A cắt tia phân giác tại H cắt AB và AC lần lượt tại E và F. Chứng minh rằng :
a/ BE=CF
b/ AE=AB\2+AC\2
c/ BE=AB\2-AC\2
d/ góc BMF =góc ACB\2-gócB\2
Cho tam giác ABC, I là trung điểm của BC. Đường thẳng vuông góc với AB tại B cắt đường thẳng AI tại D. Trên tia đối của tai ID lấy điểm E sao cho IE=ID. Gọi H là giao điểm của CE và AB. Chứng minh rằng: tam giác AHC là tam giác vuông.