Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Minh Nguyễn

Cho tam giác ABC. Gọi E, F lần lượt là trung điểm của các cạnh AB, AC. Trên tia đối của tia FB lấy điểm P sao cho PF=BF. Trên tia đối của tia EC lấy điểm Q sao cho QE=QC.

a) C/m: AP=AQ

c )C/m BQ//AC và CP//AB

d)Gọi R là giao điểm của 2 đường thẳng PC và QB. C/m rằng chu vi tam giác PQR bằng 2 lần chu vi tam giác ABC

e)Ba đường AR, BP, CQ đồng quy

Sakura Công chúa Hoa Anh...
14 tháng 5 2015 lúc 11:07

xét tam giác AEQ và tam giác BEC có

         EQ=EC

         AEQ=BEC đối đỉnh

         EA=EB

=> tam giác AEQ = tam giác BEC(c.g.g).

=> AQ=BC(cạnh tuognư ứng). (1)

Xét Tam giác AFP và tam giác CFB có

      AF=CF

     AFP=CFB đối đỉnh

     FB=FP

=>. tam giác AFB = tam giác CFB(c.g.c)

=> AP = BC (2)

từ (1) và (2) suy ra AP=AQ.

b) xét tam giác BEQ và tam giác AEC có

     EQ=EC

     BEQ=AEC đối đỉnh

     EB=EA

=> tam giác BEQ = tam giác AEC(c.g.c)

=> BQE=AEC(góc tương ứng) mà chúng ở vị trí so le trong nên BQ//AC.

xét tam giác PFC và BFA có:

FA=FC

AFB=CFP

BF=PF

=. tam giác PFC = BFA (c.g.c)

=> FAB = FCB(góc tương ứng)

mà chúng ở vị trí so le trong nên

CP//AB

cho tớ 1 tick nhé! ^^ cảm ơn

Sakura Công chúa Hoa Anh...
14 tháng 5 2015 lúc 11:15

vì Tam gáic AEQ = BEC nên QAE=CBE, mà chugns ở vị trí so le trong nên AQ//BC.

=> QAB=CBA

xét tam giác ABQ và tam giác ABC có

     QAB=CAB

     AB chung

    CAB=QBA( AC//BQ)

vậy chúng bằng nhau(g.c.g)

AQB=ACB

mà AQB=CBR(đồng vị) từ hai điều này suy ra ACB=RBC

vì tam giác AFB=CFB nên A=C mà chúng ở vị trí so le trong nên AP//BC=>PAC=BCA

Xét tam giác ABC và PCA có

     BAC=PCA(AB//PC)

     AC chung

     PAC=BCA(cmt)

vậy chúng bằng nhau theo truognừ hợp g.c.g

=>ABC=CPA

mà CPA=RCP( đồng vị) từ hai điều này suy ra ABC=RCB.

Xét tam giác ABC và RCB có 

AQB=CBR

BC chung

CPA=RCP

vậy chúng bằng nhau theo truognừ hợp g.c.g

=> AB=RC;AC=RB(cạnh tuognư ứng)

* Vì AQ//BC,AP//BC, theo tiên đề Ơ-clit => ba điểm Q,A,P thẳng hàng

vì BC = AQ = AP nên BC = 1/2 QP

* Vì AC = BQ(cmt)

      AC=BR(cmt)

nên AC = 1/2 QR

vì theo đề cho ba điểm Q,B,R đã thằng hàng nên không cần chứng minh. ba điểm P,C,R cũng vậy.

* Vì AB=CP(cmt)

      AB=RC(cmt)

nên AB= 1/2 RP

ta có chu vi tam giác PQR = PQ + QR + RP =   \(\frac{1}{2}BC+\frac{1}{2}AC+\frac{1}{2}AB=\frac{1}{2}\left(AB+AC+BC\right)=\frac{1}{2}\)chu vi ABC điều phải chứng minh.

d) Xét tam giác  PQR có BQ=BR(cùng bằng AC)

                        CR=CP(cùng bằng AB)

                      AQ=AP(cmt) và Q,A,P thẳng hàng 

suy ra B,C và A lần lượt là trung điểm của QR, RP và PQ.

gọi giao điểm của QC và BP là H

tam giác PQR có QC, PB và RA là các đuognừ trung tuyến giao nhau tại H nên H là trọng tâm. Xong

vậy 3 đường này đồng quy

Lê Đoàn Thuỳ Linh
17 tháng 8 2020 lúc 21:40

Skura Công Chúa Hoa Anh Đào  Cái đoạn chứng minh ΔACB và ΔRCB thì trong hai tam giác này làm gì có góc AQB và CPR,CPA và RBC Làm j có 4 góc này đây bạn

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sakura Công chúa Hoa Anh...
Xem chi tiết
Yaya Nguyễn
Xem chi tiết
Nguyễn Phúc Khang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
đặng lan
Xem chi tiết
Lê Đoàn Thuỳ Linh
Xem chi tiết
Trần Hà Tiên
Xem chi tiết
Xuân
Xem chi tiết
Lã Mai Linh
Xem chi tiết