Cho tam giác ABC cho D là trug điểm của AB. Lấy E và F là điểm nằm trên BC sao cho BE = EF = FC . Lấy điểm H trên tia đối của tia BA sao cho HB = BD . Chứng minh CD và AF và HE đồng quy
BÀI 1: Cho tam giác ABC. Trên tia đối của tia BA lấy D, trên tia đối của tia CA lấy E sao cho BD = CE = BC. Gọi M là giao điểm của BE và CD đường thẳng qua M song song với tia phân giác của góc BAC cắt AC ở F. Chứng minh rằng AB = CF.
BÀI 2:Cho tam giác đều ABC, điểm M thuộc cạnh BC. Gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng với M qua AC. Vẽ hình bình hành MDNE. CMR: AN // BC.
Bài 13. Cho ABC cân tại A. Trên cạnh AB lấy điểm D và trên cạnh AC lấy điểm E sao cho BD = CE a) Chứng minh CD = BE
a) Gọi I là giao điểm của CD và BE. Chứng minh A1 là đường trung trực của BC b) Chứng minh BC //DE c) Trên tia đối của tia BA lấy điểm F sao cho BF = BD , EF cắt BC tại K. Chứng minh K là trung điểm của EF.Em đang cần gấp. Cảm ơn nhiều ạ1. Cho tam giác ABC có M là trung điểm của AC trên tia đối của tia BA lấy điểm D sao cho AB = BD gọi E là giao điểm của DM với BC.
a) so sánh DE và EC ; ME và DM
b) Gọi N là trung điểm của DC chứng minh 3 điểm A,E,N thẳng hàng.
2. Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên cạnh AC lấy điểm E sao cho AE=1/3AC. Tia BE cắt CD tại M. Chứng minh M là trung điểm của CD
* Kẻ hình hộ mình vs
* mình đang cần gấp nha
Cho tam giác ABC vuông tại A có AB = 6cm; BC = 10cm; AC = 8cm
a. So sánh các góc của tam giác ABC
b. Trên tia đối tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt cạnh AC tại M. Tính MC
c. Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q. Chứng minh ba điểm B, M, Q thẳng hàng
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
1/Cho tam giác ABC cân tại C , có góc ACB=80 độ .Trong tam giác ABC lấy điểm M sao cho MAB = 10 độ . Tính góc AMC ? 2/ Cho tam giác ABC vuông ở A có cạnh huyền BC bằng hai lần cạnh góc vuông AC , gọi M và N là hai điểm Trên cạnh BC và AC sao cho BM=CN CMR : Trung điểm của đoạn MN ở trên trung tuyến xuất phát từ điểm A của tam giác ABC 3/ Cho tam giác ABC gọi E,F theo thứ tự lần lượt là các trung điểm của AB và AC . Trên tia đối của tia FB ta lấy điểm P sao cho BF = PF . Trên tia đối của tia Bc ta lấy điểm Q sao cho QE = CE CMR a/ AP = AQ b/Ba điểm P,Q,A thẳng hàng c/ cm BQ song song AC và CP song song AB d/Gọi R là giao điểm của hai đường thẳng PC và QB Cm Chu vi tam giác PQB = 2 lần chu vi tam giác ABC e Cm BA đường thẳng AR, BP , CQ đồng qui
Bài 1: Cho tam giác ABC, trên cạnh AB lấy 2 điểm D và F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H và K.
a) CMR: GH, EK, AB cắt nhau tại 1 điểm
b) CMR: AB = 4HK
Bài 2: Cho tam giác ABC có BD và CE là phân giác, cắt nhau tại I. Gọi S là trung điểm BC, biết BI = 2IS.
a) CMR: tam giác ABC vuông
b) CMR: ID / IB = CD / CB
Bài 3: Cho tam giác ABC vuông cân tại A. Trên cạnh AB và AC lần lượt lấy các điểm D và E sao cho AD = AE. Qua A và D, kẻ các đường thẳng vuông góc với BE cắt BC thứ tự tại S và T. CMR: S là trung điểm của TC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD.Chứng minh: a) Các hình chiếu của BD và CE trên BC bằng nhau. b) BE = CD. c)tam giác BMD = tam giác CME d) AM là tia phân giác của góc BAC. e)BE nhỏ hơn BC + DE chia 2