Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC, đường trung tuyến AM. Gọi 0 là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB, AC. Gọi AA', BB', CC' là các đường vuông góc kể từ A, B, C đến đường thẳng d.

Chứng minh rằng: AA' = (BB' + CC') / 2

Cao Minh Tâm
1 tháng 4 2019 lúc 4:51

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: BB' ⊥ d (gt)

CC' ⊥ d (gt)

Suy ra: BB'// CC'

Tứ giác BB'C'C là hình thang

Kẻ MM' ⊥ d ⇒ MM' // BB' // CC'

Lại có M là trung điểm của BC nên M' là trung điểm của B’C’

⇒ MM' là đường trung bình của hình thang BB'C'C

⇒ MM' = (BB' + CC') / 2 (1)

* Xét hai tam giác vuông AA'O và MM'O:

∠ (AA'O) =  ∠ (MM' O) = 90 0

AO=MO (gt)

∠ (AOA') =  ∠ (MOM' ) (2 góc đối đỉnh)

Do đó: ∆ AA'O =  ∆ MM'O (cạnh huyền, cạnh góc nhọn)

⇒AA' = MM' (2)

Từ (1) và (2) suy ra: AA' = (BB' + CC') / 2


Các câu hỏi tương tự
Lê Mộng nghi
Xem chi tiết
haru
Xem chi tiết
linhka
Xem chi tiết
Nguyễn Mai Linh
Xem chi tiết
Trần Thanh Huyền
Xem chi tiết
vũ hoàng tùng
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
dương nguyễn minh huyền
Xem chi tiết
maria
Xem chi tiết