cho tam giác ABC, đường trung tuyến AM. Gọi I là điểm bất kì trên đoạn thẳng AM các tia BI, CI lần lượt cắt các cạnh AC, AB, tại D và E. Chứng minh rằng: AE/AB=AD/AC
Cho tam giác ABC vuông ở A (AB<AC) và trung tuyến AD. Kể đường thẳng vuông góc với AD tại D lần lượt cắt AB ở F và cắt AC ở E
a) chứng minh tam giác DCE đồng dạng với tam giác DFB
b)chứng minh rằng AE x AC = AB x AF
Cho tam giác ABC, trung tuyến AM. Một đường thẳng bất kỳ đi qua trung điểm O của AM cắt cạnh AB, AC tại D và E. Chứng minh \(\frac{AB}{AD}+\frac{AC}{AE}\)= 4
Giúp minh với!
cho tam giác ABC kẻ đường thảng song song với BC sao cho cắt AB tại D và cắt AC tại e chứng minh rằng nếu BD/AD=EC/AE thì D,e lần lượt là trung điểm của AB và AC
cho tam giác ABC có AB=9cm,AC=18cm.Trên cạnh AB,AC lần lượt lấy các điểm M,N sao cho AM=2 cm ,AN=4cm.trên các cạnh AB,AC lần lượt lấy D,E sao cho BD=CE. Gọi F,G lần lượt là trung điểm BC và DE. Đường thẳng GF cắt AB,AC lần lượt tại P và Q . Chứng minh tam giác APQ cân
Cho tam giác ABC vuông tại A (AB < AC) và trung tuyến AD, kẻ đường thẳng vuông góc với AD tại D lần lượt cắt AC tại E và AB tại F.
a, C/minh: tam giác DCE đồng dạng tam giác DFB
b, C/minh: AE. AC = AB . AF
Cho tam giác ABC. Từ điểm D trên cạnh BC, kẻ các đường thẳng song song với các cạnh AB và AC, chúng cắt các cạnh AC và AB lần lượt tại F và E. Chứng minh AE\(\frac{AE}{Ab}+\frac{AF}{AC}=1\)
1, Cho tam giác ABC có I là trung điểm của cạnh BC. Qua I kẻ đường thẳng d cắt AB,AC lần lượt tại M và N . Kẻ dường thẳng d' cắt AC,AB lần lượt tại E,F . CMR : IE=IF
2, cho hình thoi ABCD có góc B bằng 60 độ . Một đường thẳng đi qua D cắt đường kéo dài các cạnh AB,BC lần lượt tại E và F. Gọi M là giao điểm của AF, CE . Chứng minh rằng : AD^2 = AM.AF
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM