Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R, đường kính BC với AB < AC
a) tính góc BAC
b) Vẽ đường tròn tâm I, đường kính AO cắt AB, AC lần lượt tại H và K. Chứng minh H, I, K thẳng hàng
c) Tia OH, OK cắt tiếp tuyến tại A với đường tròn tâm O lần lượt tại D, E. Chứng minh BD + CE = DE
d) Chứng tỏ đường tròn đi qua 3 điểm D, O, E tiếp xúc với BC
Cho tam giác nhọn ABC (AB<AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC,CA,AB lần lượt tại D,E,F. Đường thẳng EF cắt đường thẳng BC tại M. Đường thằng AD cắt đường tròn (I) tại N(khác D). Chứng minh MN là tiếp tuyến của đường tròn (I).
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC nội tiếp đường tròn tâm O. Đường tròn đường kính BC cắt 2 cạnh AB và AC lần lượt tại E và F. CMR : OA vuông góc với EF
Cho tam giác ABC với AB<AC ngoại tiếp đường tròn (O;R). Đường tròn (O;R) tiếp xúc với BC,AB lần lượt tại D,N. Kẻ đường kính DI của (O). Tiếp tuyến của đường tròn tại I cắt AB,AC tại E,F
a) Chứng minh tam giác BOE vuông và EI.BD=FI.CD=R^2
b)Gọi P,K lần lượt là trung điểm của BC,AD.Q là giao của BC và AI.Chứng minh AQ=2KP
Cho tam giác ABC nhọn (AB>AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt (I) tại N (khác D). Cm MN là tiếp tuyến của đường tròn (I).
Cho tam giác ABC nhọn (AB>AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt (I) tại N (khác D). Cm MN là tiếp tuyến của đường tròn (I).
cho tam giác ABC nhọn (AB<AC). (O) đường kính BC cắt AC,AB lần lượt tại D,E. BD cắt CE tại H. AH cắt BC tại I, DE cắt BC tại F. Tiếp tuyến tại B của (O) cắt AF tại N, gọi J là tâm đường tròn ngoại tiếp tam giác FID. Chứng minh rằng: J,N,D thẳng hàng
Bài 1. Cho 2 đường tròn (O) và (O') cắt nhau tại A, B. Kẻ đường kính AC của (O) cắt đường tròn (O') tại F. Kẻ đường kính AE của (O') cắt đường trong (O) tại G. CMR:
a. GFEC là tứ giác nội tiếp
b. GC, FE, AB đồng quy
Bài 2. Cho tam giác ABC có 3 góc nhọn. Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt tại F và E; BE cắt CF tại H.
a. CMR tứ giác AFHE nội tiếp. Từ đó, xác định tâm I của đường tròn ngoại tiếp tứ giác này.
b.Tia AH cắt BC tại D. CMR HE.HB bằng 2.HD.HI
c. CMR 4 điểm D, E, I, F cùng nằm trên 1 đường tròn.