BÀI 1:
Cho ∆ ABC cân tại A. Kẻ AH ⊥ BC (H ∈ BC), kẻ HM ⊥ AB(M ∈ AB), HN⊥ AC( N ∈ AC). a) Chứng minh : HM= HN b) Trên tia đối của NH lấy điểm F sao cho NF=NH. C/m: FC⊥ FA c) Qua H kẻ đường thẳng song song với FC cắt AC tại I. C/m: IF∕∕ BC d) Trên tia đối của tia MH lấy điểm E sao cho ME=MH.C/m: 3 điểm E,I,F thẳng hàng.
Cho tam giác ABC nhọn có đường cao AH. Lấy tùy ý điểm M trên đoạn AH (M khác A, H). BM, CM lần lượt cắt AC và AB tại D và E. Đường thẳng qua A song song với BC lần lượt cắt HD và HE tại I và K. Chứng minh tam giác HIK cân.
1, Cho tam giác ABC có I là trung điểm của cạnh BC. Qua I kẻ đường thẳng d cắt AB,AC lần lượt tại M và N . Kẻ dường thẳng d' cắt AC,AB lần lượt tại E,F . CMR : IE=IF
2, cho hình thoi ABCD có góc B bằng 60 độ . Một đường thẳng đi qua D cắt đường kéo dài các cạnh AB,BC lần lượt tại E và F. Gọi M là giao điểm của AF, CE . Chứng minh rằng : AD^2 = AM.AF
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K. a) cm: Tam giác ABC ~ Tam giác EFC b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK c) Gọi G là giao điểm của CH và AB ,cm: AH/HE + BH/HF + CH/HG > 6
Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM
Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng NP, MQ cắt BC tại E và F. CM IE = IF.
Bài 3: Qua điểm M tùy ý trên đáy lớn AB của hình thang ABCD ta kẻ các đường thẳng // với 2 đường chéo AC và BD, Các đường // này cắt BC, AD lần lượt ại E, F tương ứng. Đoạn thẳng EF cắt AC, BD tương ứng tại I và J.
1) CMR nếu H là TĐ của IJ thì H cũng là TĐ của EF
2) Trong trường hợp AB = 2CD hãy chỉ ra vị trí của M trên AB sao cho EJ = JI = IF
Giải giúp em :) Cảm ơn nhiều <3
Cho tam giác ABC vuông cân tại a trên cạnh ab lấy điểm d trên cạnh ac lấy điểm e sao cho AD bằng AE từ C kẻ đường thẳng vuông góc với BE cắt AB tại I 1 chứng minh rằng be bằng CI 2 Qua D và A kẻ đường thẳng vuông góc với BE cắt BC lần lượt tại m và n CMR MN= NC
Cho tam giác ABC vuông tại A đường cao AH
a) chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Biết AB=6cm AC=8cm Tính độ dài BC,AH,CH,BH
c) Trên AH lấy điểm M sao cho AM=1,2cm từ điểm M kẻ đường thẳng d song song với BC lần lượt cắt AB và AC tại E và F . Tính SABC,SAEF
Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC.
A. Chứng minh AH=DE
B.Gọi I, K lần lượt là trung điểm của HB,HC.Tứ giác DIKE là hình gì?
C. Gọi F là trung điểm của IK. Chứng minh tam giác FDE cân
D. Từ A kẻ đường thẳng vuông góc với DE, đường thẳng này cắt BC tại M. Chứng minh B đối xứng với C qua M.