Cho tam giác ABC . Dựng ra phía ngoài tam giác ABC tam giác APB đều và tam giác ACE cân tại E sao cho góc CEA = 1200 . Dựng tam giác BCD cân tại D sao cho góc BDC =1200 và A,D cùng thuộc nửa mặt phẳng bờ là đường thẳng BC. Dựng tam giác DEF cân tại D sao cho góc EDF =1200 và F,B thuộc cùng nửa mặt phẳng có bờ là đường thẳng DE. Chứng minh rằng PF=CE
help me vs mn ơi .
( Hình ko chính xác đâu nha )
CM
Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)
\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)
\(\Rightarrow DR\)là đường trung trực BC ( tc)
mà tam giác DBC cân tại D ( gt)
\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)
\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)
Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)
\(=30^0+30^0\)
\(=60^0\)mà BD = BR (cmt)
\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )
Vì \(\Delta APB\)đều ( gt)
\(\Rightarrow BP=BA\left(đn\right)\)
Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)
\(=60^0+\widehat{ABD}\left(1\right)\)
Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)
\(=60^0+\widehat{ABD}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)
Xét \(\Delta BPD\)và \(\Delta BAR\)có:
\(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)
CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )
\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)
Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)
Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)
mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)
\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)
\(=360^0-\widehat{BDC}-\widehat{BRC}\)
\(=360^0-120^0-120^0\)
\(=120^0\)
(Chỗ này mình hướng dẫn bạn tự làm típ nhé)
từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200
\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)
\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)
Dễ thấy EQ=EC nên PF=CE.