Ta chứng minh được AEDF là hình bình hành Þ AD Ç È = I. I là trung điểm của AD và EF. Suy ra E đối xứng với F qua I
Ta chứng minh được AEDF là hình bình hành Þ AD Ç È = I. I là trung điểm của AD và EF. Suy ra E đối xứng với F qua I
1. Cho tam giác ABC, điểm D thuộc cạnh BC. Qua D kẻ các đường thẳng song song AB và AC chúng cắt AB,AC theo thứ tự ở E và F. Chứng minh hệ thức: AE/AB+AF/AC=1
2. Cho tam giác ABC, 1 đường thẳng song song với BC cắt các cạnh AB, AC theo thứ tự ở D và E. Qua C kẻ đường thẳng song song với EB cắt AB ở F. Chứng minh hệ thức AB2=AD*AF
3.Cho tam giác ABC( AB<AC) đường phân giác AD. Qua trung điểm M của BC kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. Chứng minh rằng:
a. AE=AK
b. DK=CE
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC tại D và E. Qua C kẻ đường thẳng song song với AB cắt DE tại F. Gọi H là giao điểm của AC với BF. Đường thẳng qua H song song với AB cắt BC tại I. Chứng minh rằng:
a. DA/DB = ED/FE
b. HA.HE = HC2
Cho tam giác ABC , D là 1 điểm trên cạnh BC , Qua C kẻ đưởng thẳng song song với AC cắt AB ở E . Qua D kẻ đường thẳng song song với AB cắt AC ở F có EF // BC . Chứng minh D là trung điểm cạnh BC
Cho tam giác ABC cân tại A,M là một điểm trên cạnh BC.Qua M kẻ đường thẳng song song với AB cả cạnh AC tại D , đường thẳng song song với AC cắt AB tại E.
a)Chứng minh tam giác MDC cân
b)Chứng Minh AE=CD
c) Lấy điểm F đối xứng với M qua đường thẳng DE.Tứ giác ADEF là hình gì?
d)Gọi K là giao điểm của DF và AB.Chứng minh chu vi tam giác AKD không phụ thuộc vị trí điểm M trên cạnh BC
Cho tam giác ABC. Lấy điểm D thuộc cạnh AB sao cho: AD= 4,5 cm, BD= 5,5 cm. Qua D kẻ đường thẳng song song với BC cắt AC tại E. Qua E kẻ đường thẳng song song với AB cắt BC tại F. Biết BF = 6 cm. Tính BC
Cho tam giác ABC. M là trung điểm của BC, lấy điểm E thuộc MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC tại F. Chứng minh CF= DK
Cho tam giác ABC và một điểm M nằm trên cạnh BC. Qua M ta kẻ đường thẳng song song với cạnh AB, cắt cạnh AC tại điểm E và đường thẳng song song với cạnh AC, cắt cạnh AB tại điểm D. Khi điểm M di chuyển trên cạnh BC thì trung điểm I của đoạn thẳng DE di chuyển trên đường nào?
Từ điểm D trên cạnh AB của tam giác ABC, kẻ một đường thẳng song song với BC, cắt AC ở E và cắt đường thẳng qua C song song với AB tại F; BF cắt AC ở I. Tìm các cặp tam giác đồng dạng