cho tam giác ABC đều gọi G là trọng tâm ,O là 1 điểm trong tam giác(O\(\ne\)G) đường thẳng CG cắt BC,ABvafAC tại A',B',C'.
Tính A'O/A'G+B'O/B'G+C'O/C'G
( gợi ý CM :A'O/A'G+B'O/B'G+C'O/C'G =3 )
cho tam giác ABC đều gọi G là trọng tâm ,O là 1 điểm trong tam giác(O\(\ne\)G) đường thẳng CG cắt BC,ABvafAC tại A',B',C'.
Tính A'O/A'G+B'O/B'G+C'O/C'G
Cho tam giác đều ABC trọng tâm G, M là điểm bất kỳ nằm trong tam giác. Đường thẳng MG cắt các đường thẳng BC, AC, AB theo thứ tự ở A’, B’, C’. C/m rằng \(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=3\)
AI GIẢI NHANH MÌNH TICK CHO!
Cho tam giác ABC đều, trọng tâm G, M là 1 điểm bất kì trong tam giác. MG cắt BC,AC,AB ở A', B', C'.
CMR: A'M/A'G+ B'M/B'G+ C'M/C'G= 3
Cho tam giác đều ABC. Trọng tâm G. M là 1 điểm bất kì nằm trong tam giác.Đg thẳng MG cắt BC,AC,AB tại A' ,B', C' CMR: A'M/A'G + B'M/ B'G+ C'M/C"G=3
Giúp mk với m.n ^^
1a/ Cho tam giác đều ABC, trọng tâm G. O là một điểm thuộc miền trong tam giác và O khác G. Đường thẳng OG cắt các đường thẳng BC,BA và AC theo thứ tự ở A',B',C'. Chứng minh rằng \(\frac{OA'}{GA'}+\frac{OB'}{GB'}+\frac{OC'}{GC'}=3\)
b/ Từ một điểm P thuộc miền trong của tam giác đều ABC. Hạ các đường vuông góc PD,PE và PF xuống các cạnh BC,CA và AB. Tính \(\frac{PD+PE+PF}{BD+CE+AF}\)
Cho tam giác ABC, AA1 ; BB1 ; CC1 đồng quy tại O bất kì nằm trong tam giác. Gọi G là trọng tâm, đường thẳng OG thứ tự cắt BC, CA, AB tại A', B', C'. Tính \(\frac{OA'}{GA'}+\frac{OB'}{GB'}+\frac{OC'}{GC'}\)
mk ko biết vẽ.
Cho tam giác ABC vuông tại A ,G là trọng tâm của tam giác , một đường thẳng d bất kì đi qua G cắt AB,AC tại M,N.Chứng minh
\(\frac{1}{AM^2}+\frac{1}{AN^2}\ge\frac{9}{BC^2}\)
Tam giác ABC , G là trọng tâm tam giác , O là giao các đường phân giác ,OG vuông góc với CO, OG giao BC, CA tại P,Q. Biết BC=a, AC=b, AB=c
C/m \(\frac{1}{3}\left(a+b+c\right)=\frac{2ab}{a+b}\)