Cho tam giác ABC vuông tại A, D là điểm tùy ý thuộc cạnh BC ( D khác B, D khác C), Gọi E và F lần lượt là hình chiếu vuông góc của D trên cạnh AB và AC
a) Tứ giác AEDF là hình gì ? vì sao ?
b) Xác định vị trí của D trên cạnh BC để EF có độ dài ngắn nhất?
c) Tam giác vuông ABC có thêm điều kiện gì thì tứ giác EDF là hình vuông ?
Cho tam giác ABC vuông tại A; M là một điểm trên cạnh BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC. Xác định vị trí của điểm M sao cho tích MD.ME lớn nhất.
1. Cho tam giác ABC. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho
BD = CE. Gọi I, K, M, N theo thứ tự là trung điểm của BE, CD, BC, DE.
a. Tứ giác MINK là hình gì? Vì sao?
b. Chứng minh rằng IK vuông góc với tia phân giác At của góc A.
2. Cho tam giác đều ABC. Từ một điểm M trên cạnh AB vẽ hai đường thẳng
song song với hai cạnh AC, BC, chúng lần lượt cắt BC, AC tại D và E. Tìm vị trí của
M trên cạnh AB để độ dài đoạn DE đạt giá trị nhỏ nhất.
Cho tam giác ABC vuông tại A, D là điểm tùy ý thuộc cạnh BC (D B, D C). Gọi E và F lần
lượt là hình chiếu vuông góc của D trên cạnh AB và AC.
a) Tứ giác AEDF là hình gì ? Vì sao ?
b) Xác định vị trí của D trên cạnh BC để EF có độ dài ngắn nhất ?
Cho Tam giác ABC có góc B=60 .Trên Cạnh AC Lấy D sao cho góc ABD=1/3 góc ABC trên cạnh AB lấy E sao cho góc ACE =1/3 ACB .Gọi F là giao điểm của BD và CE .a)tính góc ACE.
b) gọi I và k theo thứ tự là chân đg vuông góc kẻ từ F xuống BC Tại AC , G và H là 2 điểm lần lượt trên tia đối FI và FK .Sao cho I là trung điểm .K là trung điểm của FH.C.m tam giác CGH là tam giác đều.
c)c/m 3 điểm H,D,G thẳng hàng
Cho tam giác ABC đều có cạnh bằng a. Gọi Dlaf trung điểm cạnh BC. E, F lần lượt thuộc AB, AC sao cho góc EDF = 60 độ.
a, Chứng minh: BE.CF= (a^2)/4
b, Tính chu vi tam giác AEF theo a
c, Xác định vị trí E, F để tam giác DEF có diện tích nhỏ nhất
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!
Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.
Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.
Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.
Cho tam giác ABC vuông tại A, D là điểm di động trên cạnh BC. Gọi E, F lần lượt là hình chiếu vuông góc của điểm D lên AB, AC. Xác định vị trí của điểm D để tứ giác AEDF là hình vuông. Xác định vị trí của điểm D sao cho 3AD + 4EF đạt giá trị nhỏ nhất.
jup nha
Cho tam giác ABC cân tại A.Trên 2 cạnh AB và AC lần lượt lấy 2 điểm E và F sao cho AE + AF = AB.Gọi M là trung điểm của EF.Chứng minh rằng M luôn nằm trên 1 đường thẳng cố định