Tam giác ABC có \(\widehat{B}-\widehat{C}=a\) . Trên tia đối của tia AC lấy D sao cho AD = AC. Tính \(\widehat{CBD}\) theo a.
Cho tam giác ABC có AB < AC . Trên tia đối của tia AB lấy điểm D sao cho AB = AD . Trên tia đối của tia AC lấy điểm E sao cho AE = AC a) CM : BE = DC
b ) Kẻ tia phân giác góc BDE cắt BC tại I . CM : tam giác BDI cân.
c ) Kẻ tia phân giác góc ACB cắt DI tại F . CM \(2.\widehat{CFD}=\widehat{CED}+\widehat{CBD}\)
Tam giác ABC có góc B- góc C=a . Trên tia đối của tia AC lấy điểm D sao cho AD=AB.Tính góc CBD theo a
cho tam giác ABC có \(\widehat{B}\)=\(2\widehat{C}\). Tia phân giác của \(\widehat{B}\)cắt AC tại D. trên tia đối BD lấy điểm E sao cho BE= AC. trên tia đối CB lấy điểm K sao cho CK= AD. CHỨNG MINH AE= AK
cho tam giác ABC có \(\widehat{B}+\widehat{C}=60^0\).Phân giác AD.Trên AD lấy điểm O, trên tia đối của AC lấy M sao cho \(\widehat{ABM}=\widehat{ABO}\).trên tia đối của AB lấy N sao cho \(\widehat{ACN}=\widehat{ÁCO}\).chứng minh:
a) AM = AN
b) tam giác MON là tam giác đều
Cho tam giác ABC có AB < AC. vẽ tia đối của tia AB, trên đó lấy điểm D sao cho AD = AC. Vẽ tia đối của AC, trên đó lấy điểm E sao cho AE = AB. So sánh tam giác \(\widehat{ABC}\) và tam giác \(\widehat{AED}\)
Cho tam giác ABC có AB AC. vẽ tia đối của tia AB, trên đó lấy điểm D sao cho AD AC. Vẽ tia đối của AC, trên đó lấy điểm E sao cho AE AB. So sánh \(\widehat{ABC}\) và\(\widehat{AED}\)
Cho tam giác ABC có \(\widehat{A}=90\)* và AB<AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của AB lấy E sao cho AE = Ac
a) Chứng minh BC = DE và BC vuông góc với DE
b) Biết \(4\widehat{B}=5\widehat{C}.Tính\widehat{AED}\)
Cho tam giác ABC có AB<AC phân giác AD. Trên cạnh AC lấy điểm E sao cho AE=AB
a) CMR \(\widehat{ABD}=\widehat{AED}\)
b)Trên tia đối của tia BA lấy điểm F sao cho BF=EC. CMR tam giác BDF= tam giác EDC.
c)CMR 3 điểm E, D, F thẳng hàng.
đ) CMR AD là đường trung trực của BÉ.