Cho tam giác ABC có \(\widehat{A}=2\widehat{B}=3\widehat{C}=4\alpha\) . CM: \(\frac{1}{AB}=\frac{1}{AC}+\frac{1}{BC}\)
Cho tam giác ABC, AB = c, AC = b, BC = a và b + c = 2a. C/m:
a) \(2\sin\widehat{A}=\sin\widehat{B}+\sin\widehat{C}\)
b) \(\frac{2}{h\widehat{A}}=\frac{1}{h\widehat{B}}+\frac{1}{h\widehat{C}}\)( hA, hB, hC lần lượt là các đường cao kẻ từ các đỉnh A, B, C )
Cho tam giác ABC nhọn có AB=c, BC=a, CA=b. Chứng minh rằng:
a) \(\sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{\widehat{B}}{2}\le\frac{b}{c+a}\)
c, \(\sin\frac{\widehat{C}}{2}\le\frac{c}{a+b}\)
d) \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
Cho tam giác ABC vuông tại A. Dựng điểm D trên cạnh AC sao cho \(\widehat{DBC}=\frac{1}{3}\widehat{ABC}\). Gọi X là hình chiếu vuông góc của C trên đường thẳng BD. Trên tia BA lấy điểm Y sao cho BX = BY. Chứng minh rằng
a) \(\frac{1}{BY^2}+\frac{1}{CX^2}=\frac{4}{XY^2}\)
b) \(\widehat{XAC}=\widehat{DBC}\)từ đó suy ra AX = XY
c) \(cos\widehat{ABC}=4cos^2\frac{\widehat{ABC}}{3}-3cos\frac{\widehat{ABC}}{3}\)
Cho tam giác ABC, phân giác AD.
CMR: a) Nếu \(\widehat{A}\)= \(^{120^o}\) thì \(\frac{1}{AD}=\frac{1}{AB}+\frac{1}{AC}\).
b) Nếu \(\widehat{B}=90^o\)thì \(\frac{\sqrt{2}}{AB}=\frac{1}{AB}+\frac{1}{AC}\).
c) Nếu \(\widehat{C}=60^o\)thì \(\frac{\sqrt{3}}{AD}=\frac{1}{AB}+\frac{1}{AC}\).
Cho tam giác ABC có \(\widehat{A}=90\)\(\widehat{B}=60\),BC = 6
a, trên tia đối tia BA vẽ D : DB=BC
cmr \(\frac{AB}{BD}=\frac{AC}{CD}\)
b, đường thẳng song song vs giân giác \(\widehat{CBD}\)kẻ từ A cắt tia CD tại H.
cmr \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AD^2}\)
Đố: Cho \(\Delta ABC\), biết \(BC=a,AC=b,AB=c,\widehat{A}=\alpha,\widehat{B}=\beta,\widehat{C}=\gamma\) chứng minh:
a)\(\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}\) b) \(a^2=b^2+c^2-2bc\cos\alpha\)
c) \(\frac{a-b}{a+b}=\frac{\tan\left[\frac{1}{2}\left(\alpha-\beta\right)\right]}{\tan\left[\frac{1}{2}\left(\alpha+\beta\right)\right]}\)
d) Biết \(s=\frac{a+b+c}{2}\). Chứng minh \(\frac{\cot\frac{\alpha}{2}}{s-a}=\frac{\cot\frac{\beta}{2}}{s-b}=\frac{\cot\frac{\gamma}{2}}{s-c}\)
cho tam giác ABC có \(\widehat{B}=45^0,\widehat{C}=30^0\),BC =\(\frac{4}{\sqrt{3}-1}\)cm. Tính độ dài đường cao AH
Cho ΔABC có ba góc nhọn, BC = a, \(\widehat{B}=\alpha\), \(\widehat{C}=\beta\), đường cao AH.
a) CM: \(CH=\frac{a.\tan\alpha}{\tan\alpha+\tan\beta}\)
b) CM: \(\frac{1}{AH}=\frac{1}{a.\tan\alpha}+\frac{1}{a.\tan\beta}\)