tick nha
Giải thích các bước giải:
Có: MI=MK, M thuộc IK (GT)
Có: BM=MC, M thuộc BC (GT)
Mà IK giao BC tại M
=> Tứ giác BICK là hbh (dhnb)
(Hai đường chéo cắt nhau tại trung điểm mỗi đường)
tick nha
Giải thích các bước giải:
Có: MI=MK, M thuộc IK (GT)
Có: BM=MC, M thuộc BC (GT)
Mà IK giao BC tại M
=> Tứ giác BICK là hbh (dhnb)
(Hai đường chéo cắt nhau tại trung điểm mỗi đường)
Cho tam giác ABC(Â= 90° , AB<AC),AM là trung tuyến. Từ M kẻ MD vuông góc với AC. Trên tia đối của tia DM, lấy điểm E sao cho MD=ME
1,Chứng minh E đối xứng vs D qua A C
2, Tứ giác AECM là hình gì? Chứng minh
3, Kẻ MI vuông góc với AB,tia EA cắt tia MI tại F. Chứng minh F đối xứng vs E qua A
4, Tia BD cắt CE tại K. Tính tỉ số CK/CE
Cho tam giác ABC có các đường trung tuyến BM và CN cắt nhau tại I
a) Chứng minh : MN // BC
b) Trên tia đối của tia MI llaays điểm K sao cho MK = MI. Tứ giác AKCI là hình gì? Vì sao?
c) Gọi P là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua điểm I. Chứng minh : I, P, D thẳng hàng.
d) Tìm điều kiện của tam giác ABC để tứ giác AKCI có đường chéo AC là phân giác của góc IAK.
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho hình tam giác ABC vuông tại A, AM là trung tuyến
a/ Chứng Minh: BC = 2 AM?
b/ Kẻ MI vuông góc AC. Chứng Minh I là trung điểm AC?
c/ Kẻ MK vuông góc AB. Chứng Minh MK là tia phân giác của góc BMA?
d/ Gọi I là trung điểm BC. Chứng Minh AB = 2NI
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC cân tại A, đường trung tuyến AM, trên tia AM lấy điểm D sao cho M là trung điểm của AD.
a, Chứng minh tứ giác ABDC là hình thoi. b, Gọi I là trung điểm của AC, E đối xung với M qua I. Tứ giác AMCE là hình gì? Vì sao?
c, Gọi F là trung điểm của AB, EF cắt Al tại N, CF cát MI tại K. Chứng minh NK vuông góc với FI
d, Trên MC lấy diểm Q sao cho. MQ=1/6BC. Chứng minh ba điểm D, Q, I thẳng hàng
Nhanh dùm mk nha đang gấp
Mk tích choo
Cho tam giác ABC (AB<AC). Trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN. Gọi D,E,P,Q lần lượt là trung điểm của BC,MN,MC,NB.
a)DQ cắt AM tại J. Chứng minh rằng góc PEQ=góc MJQ
b) DE cắt AN tại I. Chứng minh rằng DE song song với phân giác góc BAC
Cho tam giác ABC vuông tại A (AB>AC). Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho MD=MA.
A) chứng minh tứ giác ABDC là hình chữ nhật
B) gọi E là điểm đối xứng của qua A. Chứng minh tứ giác ADBE là hình bình hành.
C) EM cắt AB tại K và cắt CD tại I. Vẽ IH vuông góc với AB(H thuộc AB). Chứng minh tam giác IKB cân
cho tam giác abc vuông tại a . tia phân giác của góc abc cắt ac tại d . lấy e trên cạnh bc sao cho be =ab
a, chứng minh tam giác abd= tam giác ebd
b, tại tia ed cắt ba tại m chứng minh ec = am
c, nối ae , chứng minh góc aec = góc eam