cho tam giác abc có trung tuyến am m thuộc BC.Gọi I là điểm bất kì trên AM BI cắt CA tại D,CI cắt AB tại E. Đường thẳng qua A song song với BC cắt BI,CI tại N,P.
CM
A) AN=AP
B)DE//BC
cho tam giác ABC, đường trung tuyến AM. Gọi I là điểm bất kì trên đoạn thẳng AM các tia BI, CI lần lượt cắt các cạnh AC, AB, tại D và E. Chứng minh rằng: AE/AB=AD/AC
cho tam giác abc, trung tuyến AM. I là điểm bất kì trên AM, BI,CI lần lượt cắt AC,AB tại D,E. CM AE/AB=AD/AC
Cho tam giác ABC, có trung tuyến AM, tia phân giác góc B cắt AM tại I, AC tại D. Trên tia đối của tia MI, lấy điểm K sao cho MI=MK
a, Chứng minh BICK là hình bình hành
b, CI cắt AB tại E. Chứng minh DE//BC
c, Chứng minh AB.DE=AE.BC
1) cho tam giác ABC (AB<AC). Trên cạnh AB, AC lấy điểm D và E sao cho BD=CE. Gọi M,N,K lần lượt là trung điểm của DE, BC, CD. Chứng minh tam giác MKN cân
2) cho tam giác ABC vuông tại A. AB=7 cm, BC=25cm. Vẽ trung tuyến AM. Gọi I là trung điểm AM, Tia BI cắt AC tại D. Tính độ dài AD, BI
Mn làm hộ mình nha. Mình tick cho mình cảm ơn. Mình đang cần gấp vẽ hìng luôn nha
cho tam giác abc, trung tuyến am. trên ab, ac lần lượt lấy e, f sao cho ae=af. đoạn ef cắt am tại i. vẽ phân giác ck của góc acb cắt am,ab lần lượt tại h và k. chứng minh: hc/hk - bc/ac = 1
cho tam giác abc, trung tuyến am. trên ab, ac lần lượt lấy e, f sao cho ae=af. đoạn ef cắt am tại i. vẽ phân giác ck của góc acb cắt am,ab lần lượt tại h và k. chứng minh: hc/hk - bc/ac = 1
Cho tam giác ABC vuông tại A, AB > AC, M là điểm bất kì trên BC. Qua M kẻ Mx vuông góc với BC cắt AB tại I, cắt CA tại D
a) Chứng minh tam giác ABC đồng dạng với tam giác MDC
b) Chứng minh BI*BA = BM*BC
CI cắt BD tại K. Chứng minh BI*BA + CI*CK không đổi khi M di chuyển
d) Cho góc ACB = 60o60o, tính diện tích tam giác CMA / diện tích tam giác CDB
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM