Cho tam giác ABC có trực tâm H. M là điểm nằm trong tam giác sao cho ∠ABM = ∠ACM. Kẻ ME ⊥ AC, MF ⊥ AB. Gọi K là trực tâm tam giác AEF. Chứng minh rằng K, M, H thẳng hàng.
Giúp mình nha, mình cần gấp
Cho tam giác ABC có trực tâm H. M là điểm nằm trong tam giác sao cho ∠ABM = ∠ACM. Kẻ ME ⊥ AC, MF ⊥ AB. Gọi K là trực tâm tam giác AEF. Chứng minh rằng K, M, H thẳng hàng.
Giúp mình nha, mình cần gấp
BÂY GIỜ CÓ BẠN NÀO ONLINE HỌC GIỎI HÌNH GIÚP MÌNH VỚI:
Cho tam giác ABC có trực tâm H. M là điểm nằm trong tam giác sao cho ∠ABM = ∠ACM. Kẻ ME ⊥ AC, MF ⊥ AB. Gọi K là trực tâm tam giác AEF. Chứng minh rằng K, M, H thẳng hàng.
MÌNH CẦN GẤP Ạ. CẢM ƠN MỌI NGƯỜI
Bài 3. Cho hình chữ nhật ABCD. Gọi M, N lần lượt là trung điểm AD, BC. E là một điểm nằm trên tia đối của tia DC. Dựng tia Nx sao cho NM là phân giác ∠xNE. Nx giao EM tại K. Chứng minh rằng A, K, C thẳng hàng.
Bài 4. Cho tam giác ABC, trực tâm H. M là trung điểm BC. Qua H kẻ một đường thẳng cắt hai cạnh AB, AC tại E, F sao cho HE = HF. Chứng minh rằng MH ⊥ EF.
Bài 5. Cho tam giác ABC. M, N, P lần lượt là các điểm trên cạnh BC, CA, AB. AM giao BN tại I, BN giao CP tại J, CP giao AM tại K. Biết SAIN = SBJP = SCKM = SIJK. Chứng minh rằng SAIJP = SBJKM = SCKIN .
Bài 6. Cho tam giác ABC có trực tâm H. M là điểm nằm trong tam giác sao cho ∠ABM = ∠ACM. Kẻ ME ⊥ AC, MF ⊥ AB. Gọi K là trực tâm tam giác AEF. Chứng minh rằng K, M, H thẳng hàng.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Tam giác ABC có O là giao điểm các đường trung trực. H là trực tâm của tam giác ABC. M là trung điểm BC. Gọi K là điểm đối xứng của H qua M. Chứng minh rằng A và K đối xứng nhau qua O
help me please!
Cho tam giác ABC có trực tâm là H. M và N lần lượt là trung điểm của BC và AC. Đường trung trực BC cắt đường trung trực AC tại O.
a) Chứng minh tam giác AHB đồng dạng với tam giác MON
b) Gọi G là trực tâm tam giác ABC. Chứng minh G, H, O thẳng hàng.
Cho tam giác đều ABC. Gọi H là trực tâm của tam giác. Đường cao AD, M là một điểm trên BC. Vẽ ME = AB, MF = AC. Gọi I là trung điểm AM
a) Chứng minh DEIF là hình thoi
b) Chứng minh các đường thẳng MH, ID, EF đồng quy
ho tam giác nhọn ABC có trực tâm H, O là giao điểm các trung trực của tam giác ABC. D là điểm sao cho O là trung điểm AD.
a) Chứng minh rằng tứ giác BHCD là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh rằng AH=2OM.
c) Gọi G là trọng tâm của tam giác ABC. CMR: H,G,O thẳng hàng và OG=1/3OH