Xét tam giác AMC và tam giác EMB
có: \(\widehat{AMC}=\widehat{BME}\)(đối đỉnh)
BM = MC (gt)
AM = ME (gt)
=> tam giác AMC = tam giác EMB (c.g.c)
=> AC = BE (1); và \(\widehat{ACB}=\widehat{CBE}\)
Xét tam giác ADF và tam giac BDE
có: \(\widehat{FDA}=\widehat{BDE}\) ((đối đỉnh)
FD = DE (gt)
AD = DB (gt)
=> tam giác ADF = tam giác BDE (c.g.c)
=> AF = BE (2) và \(\widehat{FAD}=\widehat{DBE}\)
Từ (1) và (2) => AF = AC
Ta lại có: \(\widehat{FAB}+\widehat{BAC}=\widehat{ABE}+\widehat{BAC}=\widehat{ABC}+\widehat{CBE}+\widehat{BAC}=\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^0\)
=> F, A, C thẳng hàng
=> A là trung điểm của FC