Cho tam giác ABC có M là trung điểm của BC. Dựng các hình bình hành ABCD và ACBE. Chứng minh: a) Ba đường thẳng AM, BD, CE đồng quy b) Ba đường thẳng AM, CD, BE đồng quy
cho hình bình hành ABCD (AB>BC) có M,N lần lượt là trung điểm của AB và CD
a) chứng minh AMCN là hình bình hành
b) chứng minh AC BD MN đồng quy
c) gọi E là giao điểm của AD và MC.Chứng minh AM là đường trung bình của tam giác ECD
Mọi người ơi giúp mình với ạ !!!
Cho tam giác ABC, vuông tại A,đường trung tuyến AM.Gọi D là trung điểm của AB và E là điểm đối xứng với điểm M qua D. Gọi K là trung điểm của AC.Gọi F là giao điểm của AM và CE.
a, Chứng minh rằng tứ giác AEBM là hình bình hành.
b,Chứng minh rằng DE // BC và BC= 4DF.
c,Chứng minh ba đường thẳng AM,DK,FC đồng quy và DK= AM.
Cho hình bình hành ABCD , O là giao điểm hai đường chéo AC và BD . gọi M,N lần lượt là trung điểm của OB và OD.
a, Chứng minh tứ giác AMNC là hình bình hành.
b, Tia AM cắt CD.
c, Chứng minh ba đường thẳng AC, BD , E đồng qui.
Các bạn giải giúp mik bài này với
Cho tam giác ABC với trung tuyến AM, vẽ đường phân giác MD của tam giác AMB và đường phân giác ME của tam giác AMC.
a/ Chứng minh DE//BC
b/ AM cắt DE ở N. Chứng minh N là trung điểm của đoạn thẳng DE.
c/ Chứng minh 3 đường thẳng AM, BE, CD đồng quy.
Cho tam giác ABC. Gọi D và E thứ tự thuộc các cạnh AC, AB sao cho AC=3AD, AB=3AE. Gọi M, K là trung điểm của BC, DC. Chứng minh rằng:
a) BD đi qua trung điểm của AM
b) Ba đường thẳng BD, CE, AM đồng quy toán 8
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Mọi người giải giúp mình bài hình với ạ sáng mai mình phải nộp rồi ạ
Bài 1 :Cho Δ ABC các đường cao BD và CE cắt nhau tại H. Các đường thằng đi qua B và vuông góc với AB và đi qua C vuông góc với AC gặp nhau tại K.
a Chứng minh BHCK Là HCN
b Gọi I là trung điểm của BC . Chứng minh ba điểm H. I , K thẳng hàng
c Tam giác ABC phải thỏa mãn điều kiện gì để hình bình hành BHCK là HCN.
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.