Cho tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G và BD<CE.
a) So sánh: BG và CG; GBC và GCB.
b) AG cắt BC tại M, chứng minh M là trung điểm của BC và AG = 2GM.
cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G.Biết BD=CE.
a, chứng minh BG =CG;DG=GE
B,chứng minh tam giác ABC cân
cho tam giác abc , đường trung tuyến bd và ce cắt nhau tại g , biết bd = ce
a,chứng minh : AG vuông góc với BC
b,cho M là một điểm nằm trong tam giác
Cho tam giác ABC , đường trung tuyến BD và CE cắt tại G, biết BD=CE
a) Chứng minh AG vuông góc với BC
b) Cho M là một điểm nằm trong tam giác.
chứng minh : MA + MB + MC > AB + BC+ AC : 2
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G . Biết BD = CE
a) Chứng minh tam giác GBC là tam giác cân
b) Chứng minh DG + EG > 1/2 BC
Bài 12:Cho tam giác ABC có hai đường trung tuyến BI và CK cắt nhau ở G. Kéo dài AG thêm một đoạn GD = GA và AD cắt BC tại M.
a) Chứng minh: tam giác MBD = tam giác MCG
b) So sánh BD với CK
cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G. Biết BD=CE
a,chứng minh BG=CG;DG=GE
b,chứng minh tam giác ABC cân
cho tam giác ABC vuông cân tại A.vẽ 2 trung tuyến BD và CE cắt nhau tại G .chứng minh a)AG vuông góc với BC b)BD=CE
Cho tam giác ABC cân tại A; hai đường trung tuyến CE và BD giao nhau tại G.
a) Chứng minh tam giác ABD= tam giác ACE; BD= CE.
b) Chứng minh tia AG là phân giác của góc A
c) Gọi K là trung điểm của AG; I là trung điểm của CG. Chứng minh BD; CK; AI đồng quy.